 Le cerveau humain intrigue depuis longtemps bien des esprits. *Hippocrate* – père de la médecine occidentale – voyait déjà le cerveau comme **responsable de nos sensations** et **siège de notre intelligence**[1]. Aujourd’hui, notre vision des choses a bien changé. Vulgairement, le cerveau peut être décrit comme un **réseau de neurones** ou un **réseau de clusters de neurones** qu’il serait possible de représenter par la [théorie des graphes](https://www.wikiwand.com/fr/Théorie_des_graphes).  > *Fig1. Illustration de la théorie des graphes.* Ici, chaque neurone est représenté par un *nœud* (*node* ou *vertex*). Chaque *vertex* est relié avec un autre par ce que l’on appelle un *edge*, **matérialisant alors axones et dendrites**. Chaque *cluster* (les groupes distinguables sur le graphe) pourrait alors représenter un *module* impliqué dans la **réalisation d’une ou plusieurs tâches** comme la vision, l’olfaction ou autre. **Ce réseau est flexible et variable par le principe de plasticité cérébral** : des *vertex* peuvent disparaître ou apparaître au même titre que pour les *edges*. Notre vision des choses à bien changé depuis l’antiquité, mais plusieurs millénaires n’ont pas suffi. *Beaucoup de mystères restent à élucider*. __________ # Cerveaux et modélisations Pour décrire le cerveau dans l’introduction, j’ai utilisé un modèle. C’est en partie le but des neurosciences computationnelles : **créer des modèles capables de réaliser des « tâches cognitives »**[2]. Modèles appelés *brain-computational models (BCM)*. *Allen Newel*[3] fut l’instigateur de cette discipline en remettant en question la capacité à comprendre le cerveau en ne répondant qu’à une hypothèse à la fois. Selon Newell, il fallait **complémenter ces hypothèses par des modèles de sorte à pouvoir comprendre les interactions entre les différents composants**. > “What I cannot create, I do not understand.” – **Richard Feynman.** *Était-ce dès lors les prémices de l’Intelligence Artificielle ?* ## Un organe, plusieurs modèles À l’heure actuelle, la quasi-totalité des aires cérébrales sont répertoriées et décrites, notamment à l’aide de la *Brain Analysis Library of Spacial maps and Atlases (BALSA)*[4] **bien que le traitement de l’information reste une relative boîte noire**. Le challenge de la neuroscience computationnelle est alors **de créer des algorithmes** de traitement de signal consistants **avec la structure et les fonctions cérébrales**, c’est-à-dire **décomposer des processus cognitifs complexes et les matérialiser en modules de computation**[2]. [Le modèle bayésien en est un bon exemple, modélisant la manière dont le cerveau représente le monde physique et social.](https://www.wikiwand.com/en/Bayesian_approaches_to_brain_function) Selon *N. Kriegeskorte et P. K. Douglas* (2018), les **sciences cognitives ont besoin des neurosciences computationnelles** pour **mettre au point des algorithmes et des modèles expliquant et prédisant les dynamiques cognitives et comportementales**, *les données comportementales à elles seules ne permettant pas la définition de cadres pour les modèles complexes*. Si des modèles computationnels peuvent **expliquer la cognition humaine et animale**, **le Machine Learning et l’Intelligence Artificielle** sont des disciplines clés pour procurer un cadre théorique et technologique nécessaire aux neurosciences computationnelles[2]. **La neuroscience computationnelle** quant à elle se voit **stimulée par les sciences cognitives**, poussant à **des niveaux de cognition de plus en plus élevés en utilisant le Machine Learning (ML) et l’Intelligence Artificielle (IA)** comme bases théoriques et technologiques. Les progrès dans les deux disciplines provoquent parallèlement par la nature de leurs travaux, **une amélioration des technologies liées au ML et à l’IA**, permettant par exemple la *reconnaissance faciale ou reconnaissance des objets par implémentation de réseaux de neurones*. **Ces trois champs sont donc intrinsèquement liés** (Fig2.).  > *Fig2. Rôles des modèles computationnels. Adaptation de N. Kriegeskorte et P. K. Douglas (2018).* ## La création de modèles au service de tous **Créer un modèle cérébral nécessite d’établir des liens solides entre la théorie et les expérimentations**. Il serait naturel de se dire qu’un modèle, bien que fonctionnel, pourrait ne pas représenter la réalité, mais une manière alternative parmi tant d’autres pour atteindre un but similaire. Il est cependant possible à partir des approches computationnelles de **réaliser des prédictions**. D’un point de vue probabiliste, si le modèle prédit correctement les comportements et réactions d’un cerveau animal ou humain, **il se pourrait qu’il soit plus proche de la réalité que d’autres modèles moins performants**. Il s’agit là d’une approche *Top-Down* : **le modèle** (*Top*) permet de **prédire les comportements vérifiables par des données expérimentales** (*Down*) en **capturant les processus cognitifs par algorithmes, relayant la biologie au second plan**. On parle aussi d’approches *Bottom-Up* **quand les données** (*Bottom*) **servent à établir un modèle** (*Up*) en **capturant les caractéristiques biologiques de réseaux, relayant les fonctions cognitives au second plan**[2]. Par exemple, des données *Imagerie par Résonnance Magnétique fonctionnelle* (*IRMf*) sont traitées par une matrice de corrélations pour **établir des réseaux par la théorie des graphes**. **Des cartes sont alors créées mettant au jour des graphes multipolaires** : *différentes zones cérébrales interconnectées pour traiter un signal quelconque*. [Un cas concret pourrait être le réseau du mode par défaut dont je vous parlais il y a quelques mois.](https://steemit.com/science/@clement.poiret/referentiel-egocentre-le-reseau-du-mode-par-defaut) # Conclusion **La neuroscience computationnelle** a pour vocation **d’établir des modèles, des algorithmes** utilisés à la fois dans le domaine des **sciences informatiques** (*Machine Learning, IA*, etc.), mais aussi dans les **sciences cognitives** en réalisant **des liens entre les données expérimentales/comportementales et les réseaux de neurones/clusters sous-jacents**. Cependant, **les modèles Top-Down sont difficiles à mettre en relation avec les processus biologiques,** là où **les modèles Bottom-Up expliquent difficilement le traitement de l’information.** Il est donc nécessaire d’utiliser plusieurs modèles pour appréhender cet organe et son fonctionnement, notamment en combinant les approches Top-Down et Bottom-Up.  > *Fig3. Représentation schématique des modélisations Bottom-Up et Top-Down, N. Kriegeskorte et P. K. Douglas (2018).* Encore de belles années de recherche devant nous ! Références ========== [1] *Demystifying the brain*. New York, NY: Springer Berlin Heidelberg, 2018. [2] N. Kriegeskorte and P. K. Douglas, “Cognitive computational neuroscience,” *Nat. Neurosci.*, vol. 21, no. 9, pp. 1148–1160, Sep. 2018. [3] A. Newell, “You can’t play 20 questions with nature and win: Projective comments on the papers of the Symposium,” in *Visual Information Processing*, Elsevier, 1973, pp. 283–308. [4] D. C. Van Essen *et al.*, “The Brain Analysis Library of Spatial maps and Atlases (BALSA) database,” *NeuroImage*, vol. 144, pp. 270–274, Jan. 2017. [5] Scott E. Page, *"The Model Thinker"*, 2018. Table des illustrations ======================= - Illustration. Clement Poiret, CC BY-SA 4.0, - Fig1. Goel (Wikipedia), CC BY-SA 4.0, - Fig2. Clément Poiret, CC BY-SA 4.0, - Fig3. N. Kriegeskorte et P. K. Douglas, CC BY-SA. Pour aller plus loin ==================== - <https://medium.com/basecs/a-gentle-introduction-to-graph-theory-77969829ead8> - N. Kriegeskorte and P. K. Douglas, “Cognitive computational neuroscience,” *Nat. Neurosci.*, vol. 21, no. 9, pp. 1148–1160, Sep. 2018. ___  > Bannière par @nitesh9 et @rocking-dave Merci aux communautés ***#SteemSTEM*** et ***#FrancoSTEM*** pour leur aide et leur soutien ! <3
author | clement.poiret |
---|---|
permlink | breve-introduction-aux-neurosciences-computationnelles |
category | science |
json_metadata | {"community":"steempeak","app":"steempeak","format":"markdown","tags":["science","steemstem","francostem","fr","stem"],"users":["clement.poiret","nitesh9","rocking-dave"],"links":["https://www.wikiwand.com/fr/Théorie_des_graphes","https://www.wikiwand.com/en/Bayesian_approaches_to_brain_function","https://steemit.com/science/@clement.poiret/referentiel-egocentre-le-reseau-du-mode-par-defaut","https://medium.com/basecs/a-gentle-introduction-to-graph-theory-77969829ead8","/@nitesh9","/@rocking-dave","/trending/steemstem","/trending/francostem"],"image":["https://i.imgur.com/KCy4OKg.jpg","https://i.imgur.com/GyOTANA.png","https://i.imgur.com/NknYaVw.jpg","https://i.imgur.com/MyRTcdP.jpg","https://steemitimages.com/DQmeqXkd5iiKxkeTXDhAX3MW7V8bL59TF28pTtf57toNvDz/gear.gif"]} |
created | 2018-12-29 15:20:51 |
last_update | 2018-12-29 15:20:51 |
depth | 0 |
children | 13 |
last_payout | 2019-01-05 15:20:51 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 4.308 HBD |
curator_payout_value | 1.311 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 8,344 |
author_reputation | 5,029,151,303,419 |
root_title | "Brève introduction aux Neurosciences Computationnelles" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 77,553,984 |
net_rshares | 10,148,116,060,871 |
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
wackou | 0 | 73,319,195,297 | 1.29% | ||
lafona-miner | 0 | 663,415,073,545 | 20% | ||
tombstone | 0 | 89,052,758,394 | 0.4% | ||
drifter1 | 0 | 316,450,176 | 2.16% | ||
chris4210 | 0 | 13,013,515,895 | 2.16% | ||
lola-carola | 0 | 159,850,356 | 2.16% | ||
kevinwong | 0 | 77,440,049,262 | 1% | ||
eric-boucher | 0 | 7,272,774,551 | 2.16% | ||
anwenbaumeister | 0 | 207,453,258 | 4.32% | ||
lukestokes | 0 | 1,898,648,760,697 | 100% | ||
raymondspeaks | 0 | 74,159,421 | 2.16% | ||
jesse5th | 0 | 67,287,663 | 50% | ||
liberosist | 0 | 8,495,629,678 | 4.32% | ||
arconite | 0 | 253,933,285 | 0.5% | ||
lemouth | 0 | 131,916,347,080 | 25% | ||
elamental | 0 | 297,193,939 | 1% | ||
charlie777pt | 0 | 193,970,688 | 0.21% | ||
rwilday | 0 | 48,920,975 | 100% | ||
lamouthe | 0 | 12,561,332,637 | 25% | ||
lk666 | 0 | 539,094,054 | 2.16% | ||
curie | 0 | 122,055,558,551 | 4.32% | ||
hendrikdegrote | 0 | 1,508,048,981,417 | 4.32% | ||
vact | 0 | 85,510,584,173 | 4.32% | ||
golbang | 0 | 10,403,303,377 | 1.29% | ||
steemstem | 0 | 885,435,787,611 | 20% | ||
dashfit | 0 | 366,218,498 | 2.16% | ||
ancolie | 0 | 16,658,000,406 | 100% | ||
oguste | 0 | 805,647,134 | 50% | ||
gangstayid | 0 | 96,832,813 | 2.16% | ||
ixindamix | 0 | 56,115,412,922 | 50% | ||
dna-replication | 0 | 5,403,013,805 | 20% | ||
lenin-mccarthy | 0 | 72,316,640 | 2.16% | ||
gmedley | 0 | 322,384,646 | 2.16% | ||
elviento | 0 | 490,630,478 | 0.72% | ||
pacokam8 | 0 | 66,417,335 | 1.72% | ||
michelios | 0 | 265,818,496 | 0.64% | ||
planter | 0 | 1,162,698,886,324 | 50% | ||
moksamol | 0 | 539,588,449 | 2.16% | ||
getrichordie | 0 | 140,954,036 | 2.16% | ||
thatsweeneyguy | 0 | 166,728,879 | 2.16% | ||
bloom | 0 | 48,368,111,805 | 16% | ||
lugaxker | 0 | 4,078,761,133 | 99% | ||
eurogee | 0 | 190,711,077 | 2% | ||
kryzsec | 0 | 5,560,191,985 | 16% | ||
jiujitsu | 0 | 938,947,959 | 2.16% | ||
helo | 0 | 12,100,380,713 | 10% | ||
samminator | 0 | 7,109,661,934 | 10% | ||
locikll | 0 | 1,884,773,256 | 8.64% | ||
mahdiyari | 0 | 16,030,432,231 | 10% | ||
lorenzor | 0 | 5,142,750,470 | 50% | ||
aboutyourbiz | 0 | 799,376,720 | 4.32% | ||
alexander.alexis | 0 | 8,062,881,815 | 20% | ||
howtostartablog | 0 | 89,990,702 | 0.43% | ||
carna-mora | 0 | 227,217,651 | 50% | ||
jonmagnusson | 0 | 368,246,015 | 1.08% | ||
jayna | 0 | 227,906,945 | 0.64% | ||
suesa | 0 | 114,906,100,561 | 25% | ||
cryptokrieg | 0 | 502,252,810 | 4.32% | ||
slickhustler007 | 0 | 167,413,028 | 2.16% | ||
corsica | 0 | 47,421,680,843 | 100% | ||
ragepeanut | 0 | 22,498,760,809 | 100% | ||
makrotheblack | 0 | 110,798,917 | 2.16% | ||
ludmila.kyriakou | 0 | 241,470,961 | 6% | ||
lefactuoscope | 0 | 10,207,918,088 | 100% | ||
fancybrothers | 0 | 76,251,835 | 25% | ||
healthykitty | 0 | 226,487,905 | 50% | ||
howo | 0 | 90,311,960,642 | 25% | ||
tsoldovieri | 0 | 1,429,670,818 | 10% | ||
napscan | 0 | 4,771,111,404 | 70% | ||
nitego | 0 | 494,243,364 | 1.29% | ||
neumannsalva | 0 | 625,115,885 | 2.16% | ||
wargof | 0 | 231,957,977 | 10% | ||
abigail-dantes | 0 | 326,925,937,845 | 20% | ||
louis.mizuko | 0 | 224,696,094 | 50% | ||
phogyan | 0 | 85,456,312 | 2.16% | ||
esteemguy | 0 | 168,238,782 | 20% | ||
zonguin | 0 | 1,999,981,825 | 10% | ||
francosteemvotes | 0 | 258,499,395,338 | 50% | ||
g0nr0gue | 0 | 198,043,837 | 2.16% | ||
alexzicky | 0 | 4,043,000,088 | 5% | ||
mountain.phil28 | 0 | 3,594,214,862 | 25% | ||
tuoficinavirtual | 0 | 94,242,204 | 25% | ||
iamphysical | 0 | 13,061,339,638 | 90% | ||
kingswisdom | 0 | 171,171,749 | 10% | ||
zest | 0 | 3,869,248,984 | 10% | ||
felixrodriguez | 0 | 847,665,130 | 10% | ||
azulear | 0 | 2,256,482,631 | 100% | ||
psicoluigi | 0 | 286,700,693 | 50% | ||
honeysara | 0 | 196,861,279 | 1.08% | ||
vadimlasca | 0 | 182,262,699 | 4.32% | ||
mr-aaron | 0 | 282,084,934 | 10% | ||
massivevibration | 0 | 3,284,545,998 | 5% | ||
evildido | 0 | 21,808,632,598 | 50% | ||
fbslo | 0 | 2,417,880,674 | 2% | ||
clweeks | 0 | 219,250,968 | 2.59% | ||
aidefr | 0 | 573,821,739,811 | 100% | ||
irishcoffee | 0 | 246,124,692 | 50% | ||
nicola71 | 0 | 811,186,268 | 3.5% | ||
erikkun28 | 0 | 0 | 1% | ||
poodai | 0 | 168,239,578 | 2.16% | ||
markmorbidity | 0 | 97,761,934 | 2.16% | ||
peaceandwar | 0 | 634,460,759 | 2.16% | ||
enzor | 0 | 254,299,504 | 10% | ||
florian-glechner | 0 | 76,059,128 | 0.43% | ||
jesusj1 | 0 | 95,050,875 | 100% | ||
carloserp-2000 | 0 | 37,920,680,717 | 100% | ||
kanchana | 0 | 0 | 100% | ||
baloox | 0 | 1,108,224,030 | 15% | ||
gra | 0 | 7,244,260,200 | 20% | ||
tfcoates | 0 | 67,542,257 | 5% | ||
dbddv01 | 0 | 92,703,082 | 10% | ||
aalok | 0 | 106,916,958 | 26% | ||
jeffandhisguitar | 0 | 11,715,535,675 | 50% | ||
drmake | 0 | 2,302,569,154 | 2.16% | ||
guga34 | 0 | 474,597,888 | 15% | ||
pechichemena | 0 | 264,491,691 | 0.86% | ||
amestyj | 0 | 2,755,851,063 | 50% | ||
skycae | 0 | 529,359,585 | 4.32% | ||
sireh | 0 | 78,730,739 | 0.43% | ||
woolnami | 0 | 2,876,322,280 | 1.29% | ||
egotheist | 0 | 179,900,738 | 2% | ||
kenadis | 0 | 4,570,816,453 | 20% | ||
robotics101 | 0 | 3,462,532,412 | 35% | ||
tristan-muller | 0 | 74,899,716 | 20% | ||
lpv | 0 | 16,035,264,073 | 45% | ||
fabinhocrypto | 0 | 639,539,278 | 30% | ||
gentleshaid | 0 | 39,778,485,262 | 10% | ||
thescubageek | 0 | 250,510,619 | 2.16% | ||
as31 | 0 | 517,816,664 | 15% | ||
fejiro | 0 | 200,926,272 | 10% | ||
helenelenoble | 0 | 1,847,358,966 | 50% | ||
duke77 | 0 | 1,791,552,880 | 25% | ||
venalbe | 0 | 109,796,257 | 2.16% | ||
ivymalifred | 0 | 1,324,046,845 | 50% | ||
sco | 0 | 17,262,299,879 | 20% | ||
ennyta | 0 | 1,839,112,821 | 50% | ||
hkmoon | 0 | 350,139,638 | 2.16% | ||
rharphelle | 0 | 1,042,735,798 | 25% | ||
gordon92 | 0 | 133,973,726 | 2.16% | ||
edjesus | 0 | 71,034,350 | 100% | ||
narla.ghelo | 0 | 4,234,661,334 | 30% | ||
stahlberg | 0 | 798,512,530 | 2.16% | ||
gabrielatravels | 0 | 144,726,548 | 1.08% | ||
irminsoul82 | 0 | 77,641,353 | 20% | ||
happydaddyfr | 0 | 6,479,347,336 | 100% | ||
reizak | 0 | 4,144,851,125 | 20% | ||
vjap55 | 0 | 357,927,845 | 100% | ||
zlatkamrs | 0 | 220,546,684 | 4.1% | ||
mangoish | 0 | 89,253,831 | 10% | ||
creatrixity | 0 | 175,057,231 | 2.16% | ||
eliaschess333 | 0 | 4,878,634,111 | 50% | ||
shoganaii | 0 | 175,977,276 | 10% | ||
darkiche | 0 | 76,335,319 | 10% | ||
slashformotion | 0 | 254,919,815 | 50% | ||
hetty-rowan | 0 | 102,647,270 | 2.16% | ||
payger | 0 | 125,393,563 | 2.16% | ||
langford | 0 | 928,144,468 | 20% | ||
kaliangel | 0 | 3,565,779,561 | 100% | ||
mattiarinaldoni | 0 | 0 | 1% | ||
mathowl | 0 | 3,914,256,329 | 10% | ||
bobydimitrov | 0 | 163,528,928 | 4.32% | ||
adamzi | 0 | 105,136,922 | 2.16% | ||
silkroadgo | 0 | 6,005,471,917 | 1.29% | ||
dragibusss | 0 | 260,946,574 | 10% | ||
lacher-prise | 0 | 180,022,033 | 10% | ||
terrylovejoy | 0 | 3,164,697,120 | 8% | ||
thabiggdogg | 0 | 384,137,422 | 2.16% | ||
wisewoof | 0 | 117,677,698 | 2.16% | ||
olajidekehinde | 0 | 81,414,171 | 10% | ||
real2josh | 0 | 152,506,794 | 10% | ||
steepup | 0 | 396,475,985 | 8% | ||
voltagrou | 0 | 1,954,828,849 | 10% | ||
gribouille | 0 | 118,956,346 | 10% | ||
traviseric | 0 | 239,416,709 | 50% | ||
vianney | 0 | 204,782,510 | 20% | ||
yrmaleza | 0 | 911,666,545 | 50% | ||
mininthecity | 0 | 153,380,119 | 3.45% | ||
edprivat | 0 | 96,009,782 | 0.51% | ||
grizzle | 0 | 212,155,477 | 1% | ||
mondodidave73 | 0 | 980,370,451 | 3% | ||
kingabesh | 0 | 603,499,485 | 10% | ||
miguelangel2801 | 0 | 763,702,510 | 50% | ||
smeralda | 0 | 1,776,486,399 | 40% | ||
didic | 0 | 2,211,957,239 | 2.16% | ||
niko3d | 0 | 147,458,427 | 2.16% | ||
warpedpoetic | 0 | 113,543,719 | 0.64% | ||
operahoser | 0 | 262,666,859 | 0.69% | ||
emiliomoron | 0 | 1,985,713,122 | 50% | ||
galam | 0 | 339,766,919 | 25% | ||
dexterdev | 0 | 2,356,152,862 | 10% | ||
florenceboens | 0 | 531,480,622 | 10% | ||
oghie | 0 | 682,955,658 | 50% | ||
geopolis | 0 | 1,247,513,124 | 20% | ||
robertbira | 0 | 2,077,681,219 | 5% | ||
forexflo | 0 | 94,713,446 | 30% | ||
ajpacheco1610 | 0 | 174,823,546 | 10% | ||
alexdory | 0 | 7,907,567,816 | 8% | ||
flugschwein | 0 | 8,415,766,301 | 19% | ||
benleemusic | 0 | 735,068,567 | 0.43% | ||
hellofuture | 0 | 970,521,999 | 100% | ||
lianaakobian | 0 | 2,313,982,758 | 20% | ||
bringolo | 0 | 35,822,063,348 | 99.71% | ||
ulisesfl17 | 0 | 1,857,747,174 | 100% | ||
arac | 0 | 1,015,702,378 | 100% | ||
francostem | 0 | 2,637,186,677 | 20% | ||
ivan-g | 0 | 504,724,616 | 2.16% | ||
endopediatria | 0 | 637,265,718 | 20% | ||
novus | 0 | 221,868,735 | 50% | ||
chimtivers96 | 0 | 281,625,907 | 4.32% | ||
zipporah | 0 | 1,430,374,903 | 0.86% | ||
sissyjill | 0 | 77,781,478 | 7% | ||
ange.nkuru | 0 | 87,899,525 | 5% | ||
emmanuel293 | 0 | 100,883,333 | 25% | ||
morbyjohn | 0 | 140,583,891 | 7% | ||
positiveninja | 0 | 620,412,801 | 2.16% | ||
theophile.roos | 0 | 212,152,275 | 10% | ||
wanasoloben | 0 | 392,675,933 | 2.16% | ||
tomastonyperez | 0 | 6,662,283,666 | 50% | ||
elvigia | 0 | 6,663,116,093 | 50% | ||
rerere | 0 | 2,916,921,419 | 100% | ||
criminalacorm | 0 | 208,936,791,302 | 20% | ||
lesmouths-travel | 0 | 1,755,358,026 | 25% | ||
pg-live-pt | 0 | 199,771,009 | 1.08% | ||
cjunros | 0 | 85,491,683 | 2.16% | ||
ajanphoto | 0 | 4,398,721,816 | 30% | ||
effofex | 0 | 2,045,149,052 | 10% | ||
luiscd8a | 0 | 1,961,028,627 | 80% | ||
lartist-zen | 0 | 608,909,717 | 30% | ||
eniolw | 0 | 175,590,685 | 5% | ||
de-stem | 0 | 13,194,826,472 | 19.8% | ||
elsll | 0 | 72,986,039 | 4.32% | ||
geadriana | 0 | 918,189,322 | 50% | ||
elpdl | 0 | 414,639,064 | 100% | ||
imcore | 0 | 1,017,569,064 | 10% | ||
serylt | 0 | 6,035,783,941 | 19.6% | ||
bavi | 0 | 118,874,322 | 2.16% | ||
hiddenblade | 0 | 197,317,043 | 2.16% | ||
ari16 | 0 | 144,615,605 | 10% | ||
josedelacruz | 0 | 2,992,495,896 | 50% | ||
joseangelvs | 0 | 1,402,716,121 | 100% | ||
viannis | 0 | 1,489,062,919 | 50% | ||
flores39 | 0 | 415,519,792 | 100% | ||
majapesi | 0 | 239,996,190 | 50% | ||
percyflette | 0 | 249,913,355 | 50% | ||
cryptofrench | 0 | 1,154,595,000 | 30% | ||
michaelwrites | 0 | 228,701,983 | 10% | ||
woolnyeo | 0 | 301,000,812 | 1.29% | ||
deholt | 0 | 669,649,252 | 20% | ||
archaimusic | 0 | 121,256,423 | 10% | ||
studio666 | 0 | 1,705,713,447 | 30% | ||
timothyallen | 0 | 3,044,242,523 | 2.16% | ||
smacommunity | 0 | 154,856,356 | 2.16% | ||
musicvoter | 0 | 3,523,367,841 | 1% | ||
sebbbl | 0 | 11,205,161,935 | 50% | ||
temitayo-pelumi | 0 | 1,447,388,683 | 20% | ||
yusvelasquez | 0 | 420,460,703 | 50% | ||
doctor-cog-diss | 0 | 241,499,966 | 20% | ||
steemalsace | 0 | 706,018,522,074 | 100% | ||
alexworld | 0 | 196,271,004 | 25% | ||
gracelbm | 0 | 154,387,997 | 2.16% | ||
frost1903 | 0 | 48,016,811 | 50% | ||
kalypso56 | 0 | 13,626,733,021 | 100% | ||
abbyrich | 0 | 70,749,737 | 25% | ||
avizor | 0 | 352,633,224 | 2.16% | ||
acont | 0 | 240,300,931 | 50% | ||
niouton | 0 | 176,031,368 | 0.86% | ||
hro066 | 0 | 519,427,049 | 100% | ||
dimka10 | 0 | 519,922,951 | 100% | ||
anaestrada12 | 0 | 10,909,707,580 | 100% | ||
petrenkosashka | 0 | 519,501,411 | 100% | ||
artemnezlobin | 0 | 520,083,862 | 100% | ||
natalinatali | 0 | 520,035,146 | 100% | ||
steemzeiger | 0 | 1,034,615,744 | 19.8% | ||
yveslanthier | 0 | 120,982,399 | 30% | ||
lana1970 | 0 | 519,316,501 | 100% | ||
missnadeen | 0 | 520,140,486 | 100% | ||
somegaming | 0 | 90,170,977 | 4.32% | ||
azimiro | 0 | 519,426,485 | 100% | ||
mapcompass | 0 | 121,373,396 | 30% | ||
blewitt | 0 | 1,832,354,406 | 0.43% | ||
kafupraise | 0 | 132,504,267 | 34% | ||
sstrazzefa | 0 | 519,456,905 | 100% | ||
biomimi | 0 | 186,531,395 | 40% | ||
ibk-gabriel | 0 | 121,336,335 | 10% | ||
drsensor | 0 | 3,876,646,144 | 20% | ||
babush | 0 | 519,582,991 | 100% | ||
gracefulestrogen | 0 | 518,522,412 | 100% | ||
hhtb | 0 | 165,963,203 | 2.16% | ||
reyvaj | 0 | 3,296,260,766 | 10% | ||
revueh | 0 | 1,072,560,186 | 50% | ||
jesusfl17 | 0 | 416,059,040 | 100% | ||
cookiees | 0 | 518,742,902 | 100% | ||
ilovecryptopl | 0 | 490,314,615 | 3.45% | ||
purelyscience | 0 | 117,113,567 | 10% | ||
valentinapetrova | 0 | 519,104,983 | 100% | ||
brantleyja | 0 | 519,480,850 | 100% | ||
miljared | 0 | 518,636,369 | 100% | ||
cryptolibre | 0 | 223,359,454 | 50% | ||
yomismosoy | 0 | 268,233,507 | 50% | ||
bflanagin | 0 | 305,516,627 | 2.16% | ||
pursercomet | 0 | 519,752,271 | 100% | ||
unicodedemi | 0 | 520,581,944 | 100% | ||
stressedboiler | 0 | 521,899,445 | 100% | ||
islandlimit | 0 | 518,843,646 | 100% | ||
ropessecond | 0 | 519,725,140 | 100% | ||
ubaldonet | 0 | 2,022,378,491 | 80% | ||
undeadwoody | 0 | 518,332,241 | 100% | ||
tradermeetscoder | 0 | 3,613,229,463 | 33% | ||
damsirenurse | 0 | 519,338,158 | 100% | ||
friedradius | 0 | 519,663,483 | 100% | ||
fleshtestify | 0 | 518,530,484 | 100% | ||
junkiemeasly | 0 | 519,741,191 | 100% | ||
trigconic | 0 | 519,139,515 | 100% | ||
be1ozer | 0 | 519,493,061 | 100% | ||
lillywilton | 0 | 762,173,329 | 20% | ||
call-me-howie | 0 | 767,390,184 | 2.16% | ||
mary11 | 0 | 277,388,882 | 75% | ||
acousticguitar | 0 | 1,232,742,714 | 50% | ||
hansmast | 0 | 311,267,360 | 2.16% | ||
nokiajadul | 0 | 26,231,161 | 100% | ||
wstanley226 | 0 | 751,959,896 | 50% | ||
gpcx86 | 0 | 257,747,921 | 10% | ||
osariemen | 0 | 798,894,153 | 90% | ||
soulfulfox | 0 | 526,094,379 | 100% | ||
odetta199 | 0 | 519,401,064 | 100% | ||
kadaevrenat | 0 | 520,546,019 | 100% | ||
deniselatov | 0 | 519,407,376 | 100% | ||
tamarakanakova | 0 | 522,218,902 | 100% | ||
novatroup | 0 | 522,507,523 | 100% | ||
bookshydration | 0 | 519,248,034 | 100% | ||
allennut | 0 | 519,944,924 | 100% | ||
snailrepeat | 0 | 519,013,768 | 100% | ||
altitudetennis | 0 | 518,708,396 | 100% | ||
coalorebrunch | 0 | 519,919,649 | 100% | ||
tintcombine | 0 | 522,152,089 | 100% | ||
lippedpython | 0 | 519,877,878 | 100% | ||
creamssugar | 0 | 519,291,970 | 100% | ||
quantushower | 0 | 518,970,276 | 100% | ||
unripecrested | 0 | 518,958,539 | 100% | ||
skimmingfind | 0 | 521,474,998 | 100% | ||
mothersmerlin | 0 | 520,801,402 | 100% | ||
obstinacyveggie | 0 | 519,081,790 | 100% | ||
clement.poiret | 0 | 6,489,027,882 | 100% | ||
lupafilotaxia | 0 | 8,982,138,797 | 100% | ||
owlrange | 0 | 519,199,076 | 100% | ||
riftlustful | 0 | 522,029,132 | 100% | ||
silicaundo | 0 | 522,152,514 | 100% | ||
waveoutsiders | 0 | 519,229,898 | 100% | ||
algerianhaunt | 0 | 519,582,701 | 100% | ||
heapimport | 0 | 519,461,417 | 100% | ||
autostopper | 0 | 518,700,271 | 100% | ||
americamode | 0 | 519,521,186 | 100% | ||
rubleflintshire | 0 | 519,006,881 | 100% | ||
fran.frey | 0 | 1,759,373,182 | 50% | ||
liontheory | 0 | 518,921,550 | 100% | ||
definitefeed | 0 | 519,727,851 | 100% | ||
yendart | 0 | 519,827,881 | 100% | ||
defectiveindent | 0 | 522,094,900 | 100% | ||
cameramalt | 0 | 519,783,743 | 100% | ||
blandstatics | 0 | 519,092,980 | 100% | ||
marcatounique | 0 | 519,466,244 | 100% | ||
huskyelectron | 0 | 518,908,993 | 100% | ||
scalarquestion | 0 | 519,049,192 | 100% | ||
doorpedal | 0 | 522,407,363 | 100% | ||
ybazhenov | 0 | 519,636,281 | 100% | ||
alexkorban93 | 0 | 522,063,962 | 100% | ||
perpetuum-lynx | 0 | 377,849,071 | 19.6% | ||
alaiza | 0 | 447,566,556 | 100% | ||
jrevilla | 0 | 168,164,660 | 50% | ||
annaabi | 0 | 271,191,844 | 2.16% | ||
moniroy | 0 | 639,181,780 | 25% | ||
aleksey.kuzmin4 | 0 | 519,138,895 | 100% | ||
skorup87 | 0 | 22,761,215 | 12% | ||
swapsteem | 0 | 468,532,006 | 10% | ||
trang | 0 | 349,310,560 | 2.16% | ||
stem-espanol | 0 | 37,733,616,187 | 100% | ||
praditya | 0 | 1,263,733,139 | 24% | ||
rishhk | 0 | 70,619,893 | 15% | ||
up-quark | 0 | 11,413,340,934 | 50% | ||
lapp | 0 | 447,566,696 | 100% | ||
steemtpistia | 0 | 447,056,159 | 100% | ||
crassipes | 0 | 447,301,256 | 100% | ||
yashshah991 | 0 | 68,095,368 | 50% | ||
rhethypo | 0 | 131,684,246 | 2.16% | ||
massfishing | 0 | 522,772,819 | 100% | ||
benmopping | 0 | 519,873,447 | 100% | ||
dyogramsponson | 0 | 519,612,069 | 100% | ||
topkame | 0 | 521,800,679 | 100% | ||
fizzyreadymade | 0 | 519,548,907 | 100% | ||
lobestay | 0 | 519,891,831 | 100% | ||
dogpulled | 0 | 519,244,216 | 100% | ||
statusrespond | 0 | 519,294,330 | 100% | ||
jakedavis224 | 0 | 511,974,636 | 2.16% | ||
predict-crypto | 0 | 94,652,960 | 0.08% | ||
chickenmeat | 0 | 91,627,117 | 2.16% | ||
agrovision | 0 | 447,566,168 | 100% | ||
toutenimages | 0 | 243,970,165 | 50% | ||
fanta-steem | 0 | 1,992,699,487 | 30% | ||
fr-stars | 0 | 186,776,717,595 | 50% | ||
aljager78 | 0 | 519,119,304 | 100% | ||
xeliram | 0 | 234,414,428 | 50% | ||
praporvaler | 0 | 526,595,415 | 100% | ||
polfilds | 0 | 518,509,347 | 100% | ||
giulyfarci52 | 0 | 312,026,270 | 50% | ||
edvardprays | 0 | 518,613,064 | 100% | ||
oleg.domov | 0 | 519,040,326 | 100% | ||
smikovv | 0 | 519,141,699 | 100% | ||
anmarch1986 | 0 | 518,554,784 | 100% | ||
svlasov1984 | 0 | 519,041,600 | 100% | ||
kosirinr | 0 | 519,234,319 | 100% | ||
xenberg | 0 | 523,911,225 | 100% | ||
devsup | 0 | 2,774,071,261 | 0.69% | ||
alvin0617 | 0 | 142,003,174 | 2.16% | ||
stem.witness | 0 | 6,460,258,808 | 20% | ||
sarhugo | 0 | 131,804,275 | 2.16% | ||
steemexpress | 0 | 835,238,963 | 1.63% | ||
lequipe | 0 | 375,164,883 | 100% | ||
stmpay | 0 | 5,429,343,376 | 1.67% | ||
jappinesswrench | 0 | 520,146,538 | 100% | ||
wigeonpate | 0 | 519,978,865 | 100% | ||
rotatingjackdaw | 0 | 520,019,369 | 100% | ||
omtalk | 0 | 520,201,928 | 100% | ||
mcnos | 0 | 520,221,700 | 100% | ||
miss.ritylechka | 0 | 520,245,162 | 100% | ||
leafslurp | 0 | 519,902,129 | 100% | ||
curlingcesty | 0 | 519,899,769 | 100% | ||
coffleioxhost | 0 | 520,368,316 | 100% | ||
natureprinter | 0 | 519,718,186 | 100% | ||
espumaringer | 0 | 520,550,840 | 100% | ||
kingboundless | 0 | 519,920,356 | 100% | ||
medullapages | 0 | 520,119,263 | 100% | ||
approvalfoam | 0 | 520,493,914 | 100% | ||
forgettransom | 0 | 520,660,815 | 100% | ||
bosunknock | 0 | 520,504,633 | 100% | ||
routeceil | 0 | 519,931,134 | 100% | ||
dominancefels | 0 | 520,367,394 | 100% | ||
hinneymeager | 0 | 520,042,504 | 100% | ||
evaporateswim | 0 | 520,130,942 | 100% | ||
pumicebreeder | 0 | 519,911,347 | 100% | ||
lmenfirsrofsede | 0 | 520,210,454 | 100% | ||
storundesongstuf | 0 | 519,846,706 | 100% | ||
wilmer14molina | 0 | 1,622,232,345 | 100% | ||
kingnosa | 0 | 51,512,664 | 50% | ||
bluesniper | 0 | 5,345,374,201 | 0.33% | ||
travisung | 0 | 641,278,594 | 2.16% | ||
amin-ove | 0 | 90,243,479 | 50% | ||
hairgistix | 0 | 1,770,875,517 | 2.16% | ||
goodcontentbot | 0 | 5,203,804,306 | 15% | ||
huilco | 0 | 328,412,778 | 100% | ||
hanyseek | 0 | 5,405,511 | 25% | ||
steemmyphoto | 0 | 2,041,708,897 | 100% | ||
combatsports | 0 | 1,232,446,034 | 4.32% | ||
goodcontentbot1 | 0 | 1,227,501,964 | 90% | ||
goodcontentbot2 | 0 | 319,889,731 | 80% |
#### Félicitations ! Votre post a été sélectionné de part sa qualité et upvoté par le trail de curation de @aidefr ! **La catégorie du jour était :** #corps-humain ----- Si vous voulez aider le projet, vous pouvez rejoindre le trail de curation [ici](https://steemauto.com/dash.php?i=15&id=1&user=aidefr)! *Bonne continuation !* ***Nouveau : Rendez-vous sur le nouveau site web de FrancoPartages ! https://francopartages.xyz***
author | aidefr |
---|---|
permlink | re-clementpoiret-breve-introduction-aux-neurosciences-computationnelles-20181230t151900535z |
category | science |
json_metadata | {"tags":["science"],"community":"steempeak","app":"steempeak"} |
created | 2018-12-30 15:19:03 |
last_update | 2018-12-30 15:19:03 |
depth | 1 |
children | 1 |
last_payout | 2019-01-06 15:19:03 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.124 HBD |
curator_payout_value | 0.041 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 432 |
author_reputation | 9,866,452,479,217 |
root_title | "Brève introduction aux Neurosciences Computationnelles" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 77,610,041 |
net_rshares | 294,398,933,698 |
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
aidefr | 0 | 294,398,933,698 | 49% |
Merci beaucoup ! :)
author | clement.poiret |
---|---|
permlink | re-aidefr-re-clementpoiret-breve-introduction-aux-neurosciences-computationnelles-20181230t200740568z |
category | science |
json_metadata | {"tags":["science"],"community":"steempeak","app":"steempeak"} |
created | 2018-12-30 20:07:39 |
last_update | 2018-12-30 20:07:39 |
depth | 2 |
children | 0 |
last_payout | 2019-01-06 20:07:39 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.026 HBD |
curator_payout_value | 0.008 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 19 |
author_reputation | 5,029,151,303,419 |
root_title | "Brève introduction aux Neurosciences Computationnelles" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 77,621,907 |
net_rshares | 62,012,289,256 |
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
aidefr | 0 | 62,012,289,256 | 10% |
Un sujet très intéressant, mais vachement complexe! Dis-moi, j'ai l'impression qu'il s'agit de ton domaine de prédilection, est-ce que je me trompe ?
author | lamouthe |
---|---|
permlink | re-clementpoiret-breve-introduction-aux-neurosciences-computationnelles-20181230t174935096z |
category | science |
json_metadata | {"tags":["science"],"community":"steempeak","app":"steempeak"} |
created | 2018-12-30 17:49:36 |
last_update | 2018-12-30 17:49:36 |
depth | 1 |
children | 3 |
last_payout | 2019-01-06 17:49:36 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 149 |
author_reputation | 19,540,260,814,801 |
root_title | "Brève introduction aux Neurosciences Computationnelles" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 77,616,705 |
net_rshares | 0 |
C'est vrai, mais j'espère pouvoir faire des postes un peu plus en mode "cas pratiques", ça rendra le sujet beaucoup plus simple ! Effectivement, j'aimerai bien me diriger vers une thèse dans ce domaine, ou dans les biotechnologies, on verra en fonction des opportunités du moment ! :)
author | clement.poiret |
---|---|
permlink | re-lamouthe-re-clementpoiret-breve-introduction-aux-neurosciences-computationnelles-20181230t201011413z |
category | science |
json_metadata | {"tags":["science"],"community":"steempeak","app":"steempeak"} |
created | 2018-12-30 20:10:12 |
last_update | 2018-12-30 20:10:12 |
depth | 2 |
children | 2 |
last_payout | 2019-01-06 20:10:12 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 285 |
author_reputation | 5,029,151,303,419 |
root_title | "Brève introduction aux Neurosciences Computationnelles" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 77,621,982 |
net_rshares | 0 |
Je lirai tes articles avec beaucoup d'attention. Le sujet me semble passionnant, mais j'avoue que là, j'ai un peu de mal à m'y retrouver... J'ai l'impression de ne comprendre que la "surface" d'un sujet très profond et complexe! Bonne chance à toi alors pour des projets d'avenir alors!
author | lamouthe |
---|---|
permlink | re-clementpoiret-re-lamouthe-re-clementpoiret-breve-introduction-aux-neurosciences-computationnelles-20181231t073423527z |
category | science |
json_metadata | {"tags":["science"],"community":"steempeak","app":"steempeak"} |
created | 2018-12-31 07:34:24 |
last_update | 2018-12-31 07:34:24 |
depth | 3 |
children | 1 |
last_payout | 2019-01-07 07:34:24 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 287 |
author_reputation | 19,540,260,814,801 |
root_title | "Brève introduction aux Neurosciences Computationnelles" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 77,647,033 |
net_rshares | 0 |
Un approche simplifiée sur un sujet très complexe mais à priori très intéressant. Article upvoté !
author | lefactuoscope |
---|---|
permlink | re-clementpoiret-breve-introduction-aux-neurosciences-computationnelles-20181229t213906902z |
category | science |
json_metadata | {"tags":["science"],"app":"steemit/0.1"} |
created | 2018-12-29 21:39:09 |
last_update | 2018-12-29 21:39:09 |
depth | 1 |
children | 1 |
last_payout | 2019-01-05 21:39:09 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 98 |
author_reputation | 10,738,006,069,769 |
root_title | "Brève introduction aux Neurosciences Computationnelles" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 77,570,360 |
net_rshares | 6,043,885,109 |
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
clement.poiret | 0 | 6,043,885,109 | 100% |
Effectivement, c'est vraiment intéressant, j'essaierai de rentrer un peu plus dans les détails avec des exemples concrets en python, sur matlab ou bioconductor :) merci à toi !
author | clement.poiret |
---|---|
permlink | re-lefactuoscope-re-clementpoiret-breve-introduction-aux-neurosciences-computationnelles-20181230t095827843z |
category | science |
json_metadata | {"tags":["science"],"app":"steemit/0.1"} |
created | 2018-12-30 09:58:30 |
last_update | 2018-12-30 09:58:30 |
depth | 2 |
children | 0 |
last_payout | 2019-01-06 09:58:30 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 176 |
author_reputation | 5,029,151,303,419 |
root_title | "Brève introduction aux Neurosciences Computationnelles" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 77,596,729 |
net_rshares | 0 |
**Félicitations @clement.poiret** pour votre beau travail! Ce post a attiré l'attention de @ajanphoto et a été upvoté à 100% par @steemalsace et son trail de curation comportant actuellement **28** upvotes . De plus votre post apparaîtra peut-être cette semaine dans notre article de sélection hebdomadaire des meilleurs post francophones. Vous pouvez suivre @steemalsace pour en savoir plus sur le projet de soutien à la communauté fr et voir d'autres articles qualitatifs francophones ! **Nous visons la clarté et la transparence**. *Rejoignez le Discord [SteemAlsace]( https://discord.gg/jQUqtnn)* **Pour nous soutenir par vos votes : rejoignez notre Fanbase et notre Curation Trail sur Steemauto.com. C'est important pour soutenir nos membres, les steemians et Witness francophones** [ICI](https://steemauto.com/)! --- **@ajanphoto**
author | steemalsace |
---|---|
permlink | re-clementpoiret-breve-introduction-aux-neurosciences-computationnelles-20181229t162531839z |
category | science |
json_metadata | {"tags":["science"],"users":["clement.poiret","ajanphoto","steemalsace"],"links":["https://discord.gg/jQUqtnn","https://steemauto.com/"],"app":"steemit/0.1"} |
created | 2018-12-29 16:25:33 |
last_update | 2018-12-29 16:25:33 |
depth | 1 |
children | 1 |
last_payout | 2019-01-05 16:25:33 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 843 |
author_reputation | 825,870,405,639 |
root_title | "Brève introduction aux Neurosciences Computationnelles" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 77,557,382 |
net_rshares | 6,168,154,521 |
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
clement.poiret | 0 | 6,168,154,521 | 100% |
Merci beaucoup ! :)
author | clement.poiret |
---|---|
permlink | re-steemalsace-re-clementpoiret-breve-introduction-aux-neurosciences-computationnelles-20181230t095711033z |
category | science |
json_metadata | {"tags":["science"],"app":"steemit/0.1"} |
created | 2018-12-30 09:57:12 |
last_update | 2018-12-30 09:57:12 |
depth | 2 |
children | 0 |
last_payout | 2019-01-06 09:57:12 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 19 |
author_reputation | 5,029,151,303,419 |
root_title | "Brève introduction aux Neurosciences Computationnelles" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 77,596,681 |
net_rshares | 0 |
Congratulations @clement.poiret! You have completed the following achievement on the Steem blockchain and have been rewarded with new badge(s) : <table><tr><td>https://steemitimages.com/60x70/http://steemitboard.com/@clement.poiret/voted.png?201812301600</td><td>You received more than 4000 upvotes. Your next target is to reach 5000 upvotes.</td></tr> </table> <sub>_[Click here to view your Board](https://steemitboard.com/@clement.poiret)_</sub> <sub>_If you no longer want to receive notifications, reply to this comment with the word_ `STOP`</sub> **Do not miss the last post from @steemitboard:** <table><tr><td><a href="https://steemit.com/christmas/@steemitboard/christmas-challenge-send-a-gift-to-to-your-friends-the-party-continues"><img src="https://steemitimages.com/64x128/http://i.cubeupload.com/kf4SJb.png"></a></td><td><a href="https://steemit.com/christmas/@steemitboard/christmas-challenge-send-a-gift-to-to-your-friends-the-party-continues">Christmas Challenge - The party continues</a></td></tr></table> > Support [SteemitBoard's project](https://steemit.com/@steemitboard)! **[Vote for its witness](https://v2.steemconnect.com/sign/account-witness-vote?witness=steemitboard&approve=1)** and **get one more award**!
author | steemitboard |
---|---|
permlink | steemitboard-notify-clementpoiret-20181230t163826000z |
category | science |
json_metadata | {"image":["https://steemitboard.com/img/notify.png"]} |
created | 2018-12-30 16:38:24 |
last_update | 2018-12-30 16:38:24 |
depth | 1 |
children | 0 |
last_payout | 2019-01-06 16:38:24 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 1,241 |
author_reputation | 38,975,615,169,260 |
root_title | "Brève introduction aux Neurosciences Computationnelles" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 77,613,675 |
net_rshares | 0 |
Congratulations @clement.poiret! You have completed the following achievement on the Steem blockchain and have been rewarded with new badge(s) : <table><tr><td>https://steemitimages.com/60x70/http://steemitboard.com/@clement.poiret/votes.png?201901031136</td><td>You made more than 16000 upvotes. Your next target is to reach 17000 upvotes.</td></tr> </table> <sub>_[Click here to view your Board](https://steemitboard.com/@clement.poiret)_</sub> <sub>_If you no longer want to receive notifications, reply to this comment with the word_ `STOP`</sub> > Support [SteemitBoard's project](https://steemit.com/@steemitboard)! **[Vote for its witness](https://v2.steemconnect.com/sign/account-witness-vote?witness=steemitboard&approve=1)** and **get one more award**!
author | steemitboard |
---|---|
permlink | steemitboard-notify-clementpoiret-20190103t120953000z |
category | science |
json_metadata | {"image":["https://steemitboard.com/img/notify.png"]} |
created | 2019-01-03 12:09:54 |
last_update | 2019-01-03 12:09:54 |
depth | 1 |
children | 0 |
last_payout | 2019-01-10 12:09:54 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 767 |
author_reputation | 38,975,615,169,260 |
root_title | "Brève introduction aux Neurosciences Computationnelles" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 77,806,173 |
net_rshares | 0 |
Congratulations @clement.poiret! You received a personal award! <table><tr><td>https://steemitimages.com/70x70/http://steemitboard.com/@clement.poiret/birthday1.png</td><td>Happy Birthday! - You are on the Steem blockchain for 1 year!</td></tr></table> <sub>_You can view [your badges on your Steem Board](https://steemitboard.com/@clement.poiret) and compare to others on the [Steem Ranking](http://steemitboard.com/ranking/index.php?name=clement.poiret)_</sub> ###### [Vote for @Steemitboard as a witness](https://v2.steemconnect.com/sign/account-witness-vote?witness=steemitboard&approve=1) to get one more award and increased upvotes!
author | steemitboard |
---|---|
permlink | steemitboard-notify-clementpoiret-20190524t042202000z |
category | science |
json_metadata | {"image":["https://steemitboard.com/img/notify.png"]} |
created | 2019-05-24 04:22:03 |
last_update | 2019-05-24 04:22:03 |
depth | 1 |
children | 0 |
last_payout | 2019-05-31 04:22:03 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 642 |
author_reputation | 38,975,615,169,260 |
root_title | "Brève introduction aux Neurosciences Computationnelles" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 85,396,789 |
net_rshares | 0 |