create account

Getting Insights from Decision Trees and Random Forests - [Pivotal Engineering Journal] by cristi

View this thread on: hive.blogpeakd.comecency.com
· @cristi ·
$16.42
Getting Insights from Decision Trees and Random Forests - [Pivotal Engineering Journal]
<center>![Resources #18.png](https://steemitimages.com/DQmU9zDvLpkEUXKCFfmPuu6nfXGfo1cfpCYvhEUkTVBCRc9/Resources%20%2318.png)</center>
___
Greg Tam, a data scientist in New York, published an article in the Pivotal Engineering Journal about interpreting decision trees and random forests. 

Those who are familiar with machine learning know that decision trees and random forests are among the popular algorithms for supervised learning. To better understand these algorithms, I also created 8 video tutorials as part of a series on machine learning on my Youtube channel (see [here](https://www.youtube.com/watch?v=9YcMzsFvfxU&t=8s&list=PLonlF40eS6nynU5ayxghbz2QpDsUAyCVF&index=11)).

To not divert from the main point, here's what Greg touches in his article:

- how decision trees work under the hood
- how to interpret a decision tree, via an illustrative example
- how to go from decision trees to random forests (using the same example)
- decision trees vs. random forests for classification (supervised learning)
- final thoughts. 

Additionally, the article includes graphs that augment the understanding of the example used by Greg. If you're interested, please follow the link below: 
___
<center>[Interpreting Decision Trees and Random Forests](http://engineering.pivotal.io/post/interpreting-decision-trees-and-random-forests/)</center>
___
### <center>To stay in touch with me, follow @cristi </center>  
___
[Cristi Vlad](http://cristivlad.com), Self-Experimenter and Author
👍  , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and 20 others
properties (23)
authorcristi
permlinkgetting-insights-from-decision-trees-and-random-forests-pivotal-engineering-journal
categorymachine-learning
json_metadata{"tags":["machine-learning","science","python"],"users":["cristi"],"image":["https://steemitimages.com/DQmU9zDvLpkEUXKCFfmPuu6nfXGfo1cfpCYvhEUkTVBCRc9/Resources%20%2318.png"],"links":["https://www.youtube.com/watch?v=9YcMzsFvfxU&t=8s&list=PLonlF40eS6nynU5ayxghbz2QpDsUAyCVF&index=11","http://engineering.pivotal.io/post/interpreting-decision-trees-and-random-forests/","http://cristivlad.com"],"app":"steemit/0.1","format":"markdown"}
created2017-09-22 13:02:03
last_update2017-09-22 13:02:03
depth0
children1
last_payout2017-09-29 13:02:03
cashout_time1969-12-31 23:59:59
total_payout_value13.585 HBD
curator_payout_value2.833 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length1,488
author_reputation128,305,218,872,904
root_title"Getting Insights from Decision Trees and Random Forests - [Pivotal Engineering Journal]"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id15,615,268
net_rshares5,740,517,394,256
author_curate_reward""
vote details (84)
@galerykoe ·
Nice post....
properties (22)
authorgalerykoe
permlinkre-cristi-2017922t214241134z
categorymachine-learning
json_metadata{"tags":"machine-learning","app":"esteem/1.4.6","format":"markdown+html","community":"esteem"}
created2017-09-22 14:42:48
last_update2017-09-22 14:42:48
depth1
children0
last_payout2017-09-29 14:42:48
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length13
author_reputation219,580,275,328
root_title"Getting Insights from Decision Trees and Random Forests - [Pivotal Engineering Journal]"
beneficiaries
0.
accountesteemapp
weight500
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id15,622,949
net_rshares0