create account

A Few Trigonometric Identities by dkmathstats

View this thread on: hive.blogpeakd.comecency.com
· @dkmathstats · (edited)
$22.87
A Few Trigonometric Identities
Hi there. This math post features some trigonometric identities (on right angle triangles) with math proofs. 

Math text are displayed as images through the use of QuickLaTeX.com.

<center><img src="http://mirshahi.wikispaces.com/file/view/Right-Angled%20Triangle01.jpg/449483622/Right-Angled%20Triangle01.jpg" /></center>
<center><a href="http://mirshahi.wikispaces.com/file/view/Right-Angled%20Triangle01.jpg/449483622/Right-Angled%20Triangle01.jpg">Featured Image Source</a></center>

### Review Of SOH CAH TOA & Reciprocal Trigonometric Functions
---

Given an angle http://quicklatex.com/cache3/5f/ql_0ae11b7baabd364c4b2dac02c268bf5f_l3.png (theta) the trigonometric functions represent ratios of the side lengths of a right angle triangle.

To save space, refer to the summary image below. (a = adjacent side length, o = opposite side length, h = hypotenuse length)

<center><img src="https://study.com/cimages/multimages/16/sohcahtoa-triangle.jpg" /></center>
<center><a href="https://study.com/cimages/multimages/16/sohcahtoa-triangle.jpg">Image Source</a></center>

Note that when it comes to fractions, the denominator (bottom of a fraction) cannot be zero. Furthermore, angles which would make the denominator zero are not permitted.

These trigonometric functions can be used in the xy coordinate system as shown in the image below. The angle is theta, the adjacent side to theta is `x`, the opposite side to theta is `y` and the hypotenuse is the radius. A unit circle of http://quicklatex.com/cache3/16/ql_38ae60eeec1d6e088db0d682dcfbae16_l3.png (where r = 1) is assumed.

<center><img src="http://intmstat.com/analytic-trigonometry/Image477.gif" /></center>
<center><a href="http://intmstat.com/analytic-trigonometry/Image477.gif">Image Source</a></center>


The six trigonometric functions now become:

<center>![mathpage_circleTrig.png](https://steemitimages.com/DQmZk6aj1Fjiyb4BNHwQ5QcUeA5wDxyvz3QSETtXJPicHo3/mathpage_circleTrig.png)</center>

Screenshot Image From http://www.themathpage.com/aTrig/unit-circle.htm

The bottom part of the fraction cannot be zero. 


### A Few Trigonometric Identities With Proofs
---

Here are a few trigonometric identities with proofs. It is assumed that the angle theta is from 0 to 360 inclusive.

**Example One**

<center>http://quicklatex.com/cache3/6a/ql_d4061bd9dcdeb4891a27100a7b7c4d6a_l3.png</center>

The cotangent of an angle is 1 divided by the tangent of the same angle. With this in mind, the left side of the equation can equal one as follows:

<center>http://quicklatex.com/cache3/e6/ql_559f88aed4d57e15630bd2fe94bc9de6_l3.png</center>

An alternate way is using http://quicklatex.com/cache3/e8/ql_1764a8f1f6d12765c651cac00054a3e8_l3.png .


Proofs of http://quicklatex.com/cache3/b1/ql_836a8a34ff054e35b3be0d1b511194b1_l3.png are done similarly.


**Example Two**

<center>http://quicklatex.com/cache3/f7/ql_566fd40936f6d5a9b2048efcd51feef7_l3.png</center>

To start, we use the fact that http://quicklatex.com/cache3/8d/ql_c0287de2090465b192b50c36fe6a388d_l3.png and http://quicklatex.com/cache3/51/ql_da3dc91b366aba5abe818364c7543151_l3.png. The left side of the above equation becomes:

<center>http://quicklatex.com/cache3/fc/ql_2ae1531212d63afcc91bafd04c7efafc_l3.png</center>

What completes this proof is knowing that the top of the fraction is actually the equation of the circle. That is, http://quicklatex.com/cache3/b1/ql_ad5c730589ec133a78ac6e79b57fbcb1_l3.png where `r` is the radius of a circle. Using this idea, will turn the fraction into 1. 

<center>http://quicklatex.com/cache3/32/ql_3d248b683fded70f0fbfcb78beece432_l3.png</center>

**Example Three**

<center>http://quicklatex.com/cache3/be/ql_d8e71c576ac92da5dfa19abbd6cb6abe_l3.png</center>

The tangent of an angle is http://quicklatex.com/cache3/00/ql_f4f732592f30243430cd233864588000_l3.png. This fraction would be squared and a common denominator needs to be determined.

<center>http://quicklatex.com/cache3/a7/ql_c60b7fa43187e8e14705fbd3ac5bbea7_l3.png</center>

Notice how the top of the fraction is the equation of the circle. This fact is used again along with exponent rules. The resulting ratio is the square of the secant of the angle.

<center>http://quicklatex.com/cache3/f1/ql_e894d10a96f0b6d63b085b6080adcbf1_l3.png</center>

**Example Four**

<center>http://quicklatex.com/cache3/7b/ql_905d8fc84bd6457ba7d822b4e7a5e97b_l3.png</center>

The cotangent of an angle is http://quicklatex.com/cache3/38/ql_438fd8935033e97c2754155d0b779038_l3.png With a substitution and algebra, once can obtain the right side of the above equation.

<center>http://quicklatex.com/cache3/41/ql_78314249057ac4dcc49214653e067441_l3.png</center>

### References
---

http://www.sosmath.com/trig/Trig5/trig5/trig5.html

Functions 11 by Nelson Thomson
👍  , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
properties (23)
authordkmathstats
permlinka-few-trigonometric-identities
categorymath
json_metadata{"tags":["math","mathematics","algebra","steemstem","steemiteducation"],"image":["http://mirshahi.wikispaces.com/file/view/Right-Angled%20Triangle01.jpg/449483622/Right-Angled%20Triangle01.jpg","http://quicklatex.com/cache3/5f/ql_0ae11b7baabd364c4b2dac02c268bf5f_l3.png","https://study.com/cimages/multimages/16/sohcahtoa-triangle.jpg","http://quicklatex.com/cache3/16/ql_38ae60eeec1d6e088db0d682dcfbae16_l3.png","http://intmstat.com/analytic-trigonometry/Image477.gif","https://steemitimages.com/DQmZk6aj1Fjiyb4BNHwQ5QcUeA5wDxyvz3QSETtXJPicHo3/mathpage_circleTrig.png","http://quicklatex.com/cache3/6a/ql_d4061bd9dcdeb4891a27100a7b7c4d6a_l3.png","http://quicklatex.com/cache3/e6/ql_559f88aed4d57e15630bd2fe94bc9de6_l3.png","http://quicklatex.com/cache3/e8/ql_1764a8f1f6d12765c651cac00054a3e8_l3.png","http://quicklatex.com/cache3/b1/ql_836a8a34ff054e35b3be0d1b511194b1_l3.png","http://quicklatex.com/cache3/f7/ql_566fd40936f6d5a9b2048efcd51feef7_l3.png","http://quicklatex.com/cache3/8d/ql_c0287de2090465b192b50c36fe6a388d_l3.png","http://quicklatex.com/cache3/51/ql_da3dc91b366aba5abe818364c7543151_l3.png","http://quicklatex.com/cache3/fc/ql_2ae1531212d63afcc91bafd04c7efafc_l3.png","http://quicklatex.com/cache3/b1/ql_ad5c730589ec133a78ac6e79b57fbcb1_l3.png","http://quicklatex.com/cache3/32/ql_3d248b683fded70f0fbfcb78beece432_l3.png","http://quicklatex.com/cache3/be/ql_d8e71c576ac92da5dfa19abbd6cb6abe_l3.png","http://quicklatex.com/cache3/00/ql_f4f732592f30243430cd233864588000_l3.png","http://quicklatex.com/cache3/a7/ql_c60b7fa43187e8e14705fbd3ac5bbea7_l3.png","http://quicklatex.com/cache3/f1/ql_e894d10a96f0b6d63b085b6080adcbf1_l3.png","http://quicklatex.com/cache3/7b/ql_905d8fc84bd6457ba7d822b4e7a5e97b_l3.png","http://quicklatex.com/cache3/38/ql_438fd8935033e97c2754155d0b779038_l3.png","http://quicklatex.com/cache3/41/ql_78314249057ac4dcc49214653e067441_l3.png"],"links":["http://mirshahi.wikispaces.com/file/view/Right-Angled%20Triangle01.jpg/449483622/Right-Angled%20Triangle01.jpg","https://study.com/cimages/multimages/16/sohcahtoa-triangle.jpg","http://intmstat.com/analytic-trigonometry/Image477.gif","http://www.themathpage.com/aTrig/unit-circle.htm","http://www.sosmath.com/trig/Trig5/trig5/trig5.html"],"app":"steemit/0.1","format":"markdown"}
created2018-01-20 01:10:12
last_update2018-01-20 03:42:36
depth0
children3
last_payout2018-01-27 01:10:12
cashout_time1969-12-31 23:59:59
total_payout_value17.484 HBD
curator_payout_value5.390 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length4,784
author_reputation149,469,744,025,662
root_title"A Few Trigonometric Identities"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id30,748,213
net_rshares2,069,011,844,616
author_curate_reward""
vote details (60)
@joseferrer ·
excellent explanation friend already you vote, greetings
properties (22)
authorjoseferrer
permlinkre-dkmathstats-a-few-trigonometric-identities-20180120t125026662z
categorymath
json_metadata{"tags":["math"],"app":"steemit/0.1"}
created2018-01-20 12:50:33
last_update2018-01-20 12:50:33
depth1
children0
last_payout2018-01-27 12:50:33
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length56
author_reputation-56,563,599,716
root_title"A Few Trigonometric Identities"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id30,856,127
net_rshares0
@peeterjoot ·
fyi.  Your brackets would look better if you put left/right markers on them in the latex: {\left( \frac{x}{y} \right)}^2
properties (22)
authorpeeterjoot
permlinkre-dkmathstats-a-few-trigonometric-identities-20180120t033107717z
categorymath
json_metadata{"tags":["math"],"app":"steemit/0.1"}
created2018-01-20 03:31:06
last_update2018-01-20 03:31:06
depth1
children1
last_payout2018-01-27 03:31:06
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length120
author_reputation4,108,216,103
root_title"A Few Trigonometric Identities"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id30,770,549
net_rshares0
@dkmathstats ·
Okay. Fixed. Thank you for the tip.
properties (22)
authordkmathstats
permlinkre-peeterjoot-re-dkmathstats-a-few-trigonometric-identities-20180120t034309999z
categorymath
json_metadata{"tags":["math"],"app":"steemit/0.1"}
created2018-01-20 03:43:09
last_update2018-01-20 03:43:09
depth2
children0
last_payout2018-01-27 03:43:09
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length35
author_reputation149,469,744,025,662
root_title"A Few Trigonometric Identities"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id30,772,379
net_rshares0