create account

Mathematics - Mathematical Analysis Advanced Plane Types by drifter1

View this thread on: hive.blogpeakd.comecency.com
· @drifter1 ·
$21.26
Mathematics - Mathematical Analysis Advanced Plane Types
<html>
<p><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Intersecting_planes.svg/1200px-Intersecting_planes.svg.png" width="1200" height="1080"/></p>
<p><a href="https://en.wikipedia.org/wiki/Plane_(geometry)">Source</a></p>
<p><br></p>
<h2>Introduction</h2>
<p>&nbsp;&nbsp;&nbsp;&nbsp;Hello it's a me again drifter1! Today's topic is <strong>Mathematical Analysis</strong> again and we will continue our talk about <strong>Planes </strong>that we started in my <a href="https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-vectors-lines-and-planes">previous post</a> yesterday. I will get into some <strong>forms/types of planes</strong> and their corresponding equations in-depth so that you also understand more about what we discussed last time. So, I highly suggest you reading my previous post and be prepared for some more advanced stuff today!</p>
<p>So, let's get started!</p>
<p><br></p>
<h2>A simple Example</h2>
<p>Using the knowledge of last time let's get into an example...</p>
<p>Find the equation for the Plane that:</p>
<ol>
  <li>contains the point P0(-3, 0, 7) AND</li>
  <li>has a normal vector n = 5i + 2j - k</li>
</ol>
<p>From the second form ("or") of last time we have:</p>
<p>&nbsp;A(x - x0) + B(y - y0) + C(z - z0) = 0 =&gt;</p>
<p>5(x + 3) + 2(y - 0) - (z - 7) = 0 =&gt;</p>
<p><strong>5x + 2y - z = -22</strong></p>
<p><br></p>
<h3>What if we don't know the vector?</h3>
<p>&nbsp;&nbsp;&nbsp;&nbsp;If the normal vector is not given (most of the times this is the case) then we will have more then 1 points given to us.</p>
<p>&nbsp;&nbsp;&nbsp;&nbsp;With 3 points A, B and C given to us we find the normal vector by finding the crossproduct of vectors that contain A, B and C as start or endpoints.</p>
<p>For example:</p>
<p>AB x AC, where AB and AC are vectors.</p>
<p>Having A(0, 0, 1), B(2, 0, 0) and C(0, 3, 0) we get:</p>
<p><img src="http://quicklatex.com/cache3/c1/ql_d7424effc1c01807c71fee3bb7cf96c1_l3.png"/>&nbsp;(<a href="http://quicklatex.com/cache3/c1/ql_d7424effc1c01807c71fee3bb7cf96c1_l3.png">quicklatex</a>)</p>
<p>And so n = 3i + 2j + 6k is a normal vector to that plane.</p>
<p>That way the Plane can be found by using any of the points A, B or C as P0...</p>
<p>For example using A we get:</p>
<p>3(x - 0) + 2(y - 0) + 6(z - 1) = 0 =&gt;</p>
<p><strong>3x + 2y + 6z = 6</strong></p>
<p><br></p>
<h2>More stuff about Planes</h2>
<p>After getting into those two characteristic examples, let's get into some more things...</p>
<p>We might be asked one of the following things:</p>
<ul>
  <li>Find a vector that is parallel to the intercept of two planes</li>
  <li>Find the intercept point of a line and a plane</li>
</ul>
<p>&nbsp;&nbsp;&nbsp;&nbsp;Finding the first one is simple, cause the intercept line will be vertically across to the normal vectors n1 and n2 of the two planes. That way it will be parallel to the cross product n1 x n2 and so any multiple of n1 x n2 will be vertical to the line.</p>
<p>&nbsp;&nbsp;&nbsp;&nbsp;The second one is also simple, cause we just have to solve the system of the two (or more) equations that represent the line and plane. The intercept point is a part of the line and plane and so using the parametric representation of a line we could just "insert" those equations into the plane equation to get the value of t. Putting the value of t to the x, y and z equations we then get the actual intercept point...</p>
<p><br></p>
<h2>Cylinder Plane</h2>
<p><img src="https://images.tutorvista.com/cms/images/131/21.png" width="480" height="550"/></p>
<p><a href="https://math.tutorvista.com/geometry/cylinder.html">Source</a></p>
<p>A <strong>Cylinder </strong>is a plane that is build up of all the lines that:</p>
<ol>
  <li>are parallel to a specific line</li>
  <li>pass through a specific (generator) curve</li>
</ol>
<p>&nbsp;&nbsp;&nbsp;&nbsp;To understand a cylinder more we create <strong>cross-sections</strong> which are the "curves" that we get when cutting the cylinder with parallel planes.</p>
<p>Maybe the simplest one is the <strong>y = x^3 parabola cylinder</strong>.</p>
<p>&nbsp;&nbsp;&nbsp;&nbsp;Another interesting cylinder is the <strong>hyperbola cylinder</strong> which contains <strong>lines parallel to the hyperbola y^2 - z^2 = 1</strong> in the plane yz ( x = 0).</p>
<p>&nbsp;&nbsp;&nbsp;&nbsp;So, a <strong>cylinder equation </strong>is any equation that contains<strong> 2 of the 3 cartesian coordinates </strong>and creates a cylinder parallel to the axis of the 3rd one.</p>
<p><br></p>
<h2>2nd-degree Plane Equations</h2>
<p>More advanced planes are build of 2nd-degree equations.</p>
<p>These planes are <strong>3-dimensional</strong> and have the following <strong>general form</strong>:</p>
<p><img src="http://quicklatex.com/cache3/47/ql_029f5199bd41e889a7047c9dc6e5bb47_l3.png"/>&nbsp;(<a href="http://quicklatex.com/cache3/47/ql_029f5199bd41e889a7047c9dc6e5bb47_l3.png">quicklatex</a>)</p>
<p>where A, B, ... are constants.</p>
<p>Those equations can of course be simplified using rotations and commutations.</p>
<p>&nbsp;&nbsp;&nbsp;&nbsp;The Cylinders that we talked about previously are of course also of this form, but are a much simpler case!</p>
<p>The <strong>most important planes</strong> of this category are:</p>
<ul>
  <li>Ellipsoids</li>
  <li>Paraboloids</li>
  <li>Elliptical cones</li>
  <li>Hyperboloids</li>
</ul>
<p>Let's dive into each category separately...</p>
<p><br></p>
<h3>Ellipsoids</h3>
<p><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/3/33/Ellipsoide.svg/400px-Ellipsoide.svg.png" width="400" height="306"/></p>
<p><a href="https://en.wikipedia.org/wiki/Ellipsoid">Source</a></p>
<p>The sphere that we all know is of course a special case of an Ellipsoid...</p>
<p>An <strong>ellipsoid </strong>is represented using an equation of the <strong>form</strong>:</p>
<p><img src="http://quicklatex.com/cache3/01/ql_e0e1c7a84d95dcf8b5740018086efe01_l3.png"/>&nbsp;(<a href="http://quicklatex.com/cache3/01/ql_e0e1c7a84d95dcf8b5740018086efe01_l3.png">quicklatex</a>)</p>
<p>An ellipsoid of course <strong>intersects </strong>with the axes at the points:</p>
<ul>
  <li>(+-a, 0, 0) for the x-axis</li>
  <li>(0, +-b, 0) for the y-axis</li>
  <li>(0, 0, +-c) for the z-axis</li>
</ul>
<p>Having only two of the coordinates we end up with an <strong>ellipse </strong>and the elliptic equation:</p>
<p><img src="http://quicklatex.com/cache3/d0/ql_347fa24f027167a780acc3a0980a0fd0_l3.png"/>&nbsp;(<a href="http://quicklatex.com/cache3/d0/ql_347fa24f027167a780acc3a0980a0fd0_l3.png">quicklatex</a>)</p>
<p>where z = 0</p>
<p><br></p>
<h3>Paraboloids</h3>
<p><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/1/12/Paraboloid_of_Revolution.svg/220px-Paraboloid_of_Revolution.svg.png" width="220" height="189"/></p>
<p><a href="https://en.wikipedia.org/wiki/Paraboloid">Source</a></p>
<p>An <strong>elliptic paraboloid</strong> is of the form:</p>
<p><img src="http://quicklatex.com/cache3/6c/ql_1164ce40b0b32ce7515d5dfa224f7c6c_l3.png"/>(<a href="http://quicklatex.com/cache3/6c/ql_1164ce40b0b32ce7515d5dfa224f7c6c_l3.png">quicklatex</a>)</p>
<p>Such a plane is <strong>symmetrical </strong>to the planes x = 0 and y = 0.</p>
<p>The only <strong>intersect </strong>point with the axes is the point O(0, 0, 0).</p>
<p>The plane is either up (c &gt; 0) or down (c &lt; 0) of the plane xy depending on c...</p>
<p>The <strong>cross-sections</strong> of it with the planes that the axes define in pairs of 2 are:</p>
<ul>
  <li>x = 0: the parabola z = (c/b^2)y^2</li>
  <li>y = 0: the parabola z = (c/a^2)x^2</li>
  <li>z = 0: the point O(0, 0, 0)</li>
</ul>
<p><br></p>
<h3>Elliptical cones</h3>
<p><img src="http://mathworld.wolfram.com/images/eps-gif/EllipticCone_1000.gif"/></p>
<p><a href="http://mathworld.wolfram.com/EllipticCone.html">Source</a></p>
<p>A elliptical cone is represented by the <strong>equation</strong>:</p>
<p><img src="http://quicklatex.com/cache3/79/ql_a4848c87f37e1aa2e943022c0aa3c979_l3.png"/>&nbsp;(<a href="http://quicklatex.com/cache3/79/ql_a4848c87f37e1aa2e943022c0aa3c979_l3.png">quicklatex</a>)</p>
<p>Such a plane is <strong>symmetrical </strong>to the planes that are defined by the axes in pairs of 2.</p>
<p>The <strong>cross-sections</strong> of those planes with the cone are:</p>
<ul>
  <li>x = 0: the lines z = +- (c/b) y</li>
  <li>y = 0: the lines z = +- (c/a) x</li>
  <li>z = 0: the point O(0, 0, 0)</li>
</ul>
<p>&nbsp;&nbsp;&nbsp;&nbsp;More specifcially the cross-sections of the planes z = z0 of the plane xy with the conical plane are <strong>ellipses </strong>which centers that correspond to the axis z and vertices parallel to the previous lines.</p>
<p>For a = b we get a <strong>right circular cone</strong>.</p>
<p><br></p>
<h3>Hyperboloids</h3>
<p><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/5/59/Cylinder_-_hyperboloid_-_cone.gif/220px-Cylinder_-_hyperboloid_-_cone.gif" width="220" height="220"/></p>
<p><a href="https://en.wikipedia.org/wiki/Hyperboloid">Source</a></p>
<p>Hyperboloids of <strong>one cone</strong> are of the <strong>form</strong>:</p>
<p><img src="http://quicklatex.com/cache3/57/ql_d02d1241df1a824a6d988ba46d496e57_l3.png"/>&nbsp;(<a href="http://quicklatex.com/cache3/57/ql_d02d1241df1a824a6d988ba46d496e57_l3.png">quicklatex</a>)</p>
<p>Which is a plane that is again <strong>symmetrical </strong>to the planes defined by the axes in pairs of 2.</p>
<p>The <strong>cross-sections</strong> with this planes are this time:</p>
<ul>
  <li>x = 0: the hyperbola y^2/b^2 - z^2/c^2 = 1</li>
  <li>y = 0: the hyperbola x^2/a^2 - z^2/c^2 = 1</li>
  <li>z = 0: the ellipse x^2/a^2 + y^2/b^2 &nbsp;= 1</li>
</ul>
<p>&nbsp;&nbsp;&nbsp;&nbsp;Such a plane is <strong>cohesive </strong>which means that all the points are connected and so we can go to any point starting from any point.</p>
<p><br></p>
<p>We can also have <strong>double-cone planes</strong> that are of the form:</p>
<p><img src="http://quicklatex.com/cache3/96/ql_8b9c0e31808a39194e3a1f288b948e96_l3.png"/>&nbsp;(<a href="http://quicklatex.com/cache3/96/ql_8b9c0e31808a39194e3a1f288b948e96_l3.png">quicklatex</a>)</p>
<p>&nbsp;&nbsp;&nbsp;&nbsp;This plane is again <strong>symmetrical </strong>to the planes defined by the axes in pairs of 2, but it <strong>doesn't intersect with the plane z = 0</strong>.&nbsp;</p>
<p>But, we still have <strong>cross-sections</strong> that this time are the <strong>hyperbolas</strong>:</p>
<ul>
  <li>x = 0: the hyperbola z^2/c^2 - y^2/b^2 = 1</li>
  <li>y = 0: the hyperbola z^2/c^2 - x^2/a^2 = 1</li>
</ul>
<p><br></p>
<h3>A Hyperbolic Paraboloid</h3>
<p><img src="http://mathworld.wolfram.com/images/eps-gif/HyperbolicParaboloid_500.gif"/></p>
<p><a href="http://mathworld.wolfram.com/HyperbolicParaboloid.html">Source</a></p>
<p>Lastly, let's also talk about hyperbolic paraboloids.</p>
<p>&nbsp;&nbsp;&nbsp;&nbsp;As you can already see we can create any form and shape we wish by tweaking the simplest equation which is the ellipsoid one...</p>
<p>In the same fashion an plane of the <strong>form</strong>:</p>
<p><img src="http://quicklatex.com/cache3/2c/ql_f001ba855e5543a232f5c40d31b3552c_l3.png"/>, z &gt; 0 (<a href="http://quicklatex.com/cache3/2c/ql_f001ba855e5543a232f5c40d31b3552c_l3.png">quicklatex</a>)</p>
<p>is a <strong>hyperbolic parabola</strong>.</p>
<p>Such a plane is <strong>symmetrical </strong>to the planes x = 0 and y = 0.</p>
<p>The <strong>cross-sections</strong> with those planes are:</p>
<ul>
  <li>x = 0: the parabola z = (c / b^2) y^2</li>
  <li>y = 0: the parabola z = -(c / a^2) x^2</li>
</ul>
<p>In the plane x = 0 the parabola passes through the center of the axes O(0, 0, 0) and "opens upwards".</p>
<p>On the other hand on the plane y = 0 the parabola "opens downwards".</p>
<p>When cutting through using z = z0 we get a hyperbola.</p>
<p><br></p>
<p>And this is actually it for today and I hope that you enjoyed it.</p>
<p>&nbsp;&nbsp;&nbsp;&nbsp;There is even more to learn about planes and equations that describe them, but I hope that this and the previous post gave you an idea about what those planes are and how they look in space!</p>
<p>Next time we will get into multi-variable and vector functions!</p>
<p>Bye!</p>
</html>
👍  , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and 132 others
properties (23)
authordrifter1
permlinkmathematics-mathematical-analysis-advanced-plane-types
categorymathematics
json_metadata{"tags":["mathematics","steemiteducation","steemstem","plane","types"],"image":["https://upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Intersecting_planes.svg/1200px-Intersecting_planes.svg.png","http://quicklatex.com/cache3/c1/ql_d7424effc1c01807c71fee3bb7cf96c1_l3.png","https://images.tutorvista.com/cms/images/131/21.png","http://quicklatex.com/cache3/47/ql_029f5199bd41e889a7047c9dc6e5bb47_l3.png","https://upload.wikimedia.org/wikipedia/commons/thumb/3/33/Ellipsoide.svg/400px-Ellipsoide.svg.png","http://quicklatex.com/cache3/01/ql_e0e1c7a84d95dcf8b5740018086efe01_l3.png","http://quicklatex.com/cache3/d0/ql_347fa24f027167a780acc3a0980a0fd0_l3.png","https://upload.wikimedia.org/wikipedia/commons/thumb/1/12/Paraboloid_of_Revolution.svg/220px-Paraboloid_of_Revolution.svg.png","http://quicklatex.com/cache3/6c/ql_1164ce40b0b32ce7515d5dfa224f7c6c_l3.png","http://mathworld.wolfram.com/images/eps-gif/EllipticCone_1000.gif","http://quicklatex.com/cache3/79/ql_a4848c87f37e1aa2e943022c0aa3c979_l3.png","https://upload.wikimedia.org/wikipedia/commons/thumb/5/59/Cylinder_-_hyperboloid_-_cone.gif/220px-Cylinder_-_hyperboloid_-_cone.gif","http://quicklatex.com/cache3/57/ql_d02d1241df1a824a6d988ba46d496e57_l3.png","http://quicklatex.com/cache3/96/ql_8b9c0e31808a39194e3a1f288b948e96_l3.png","http://mathworld.wolfram.com/images/eps-gif/HyperbolicParaboloid_500.gif","http://quicklatex.com/cache3/2c/ql_f001ba855e5543a232f5c40d31b3552c_l3.png"],"links":["https://en.wikipedia.org/wiki/Plane_(geometry)","https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-vectors-lines-and-planes","http://quicklatex.com/cache3/c1/ql_d7424effc1c01807c71fee3bb7cf96c1_l3.png","https://math.tutorvista.com/geometry/cylinder.html","http://quicklatex.com/cache3/47/ql_029f5199bd41e889a7047c9dc6e5bb47_l3.png","https://en.wikipedia.org/wiki/Ellipsoid","http://quicklatex.com/cache3/01/ql_e0e1c7a84d95dcf8b5740018086efe01_l3.png","http://quicklatex.com/cache3/d0/ql_347fa24f027167a780acc3a0980a0fd0_l3.png","https://en.wikipedia.org/wiki/Paraboloid","http://quicklatex.com/cache3/6c/ql_1164ce40b0b32ce7515d5dfa224f7c6c_l3.png","http://mathworld.wolfram.com/EllipticCone.html","http://quicklatex.com/cache3/79/ql_a4848c87f37e1aa2e943022c0aa3c979_l3.png","https://en.wikipedia.org/wiki/Hyperboloid","http://quicklatex.com/cache3/57/ql_d02d1241df1a824a6d988ba46d496e57_l3.png","http://quicklatex.com/cache3/96/ql_8b9c0e31808a39194e3a1f288b948e96_l3.png","http://mathworld.wolfram.com/HyperbolicParaboloid.html","http://quicklatex.com/cache3/2c/ql_f001ba855e5543a232f5c40d31b3552c_l3.png"],"app":"steemit/0.1","format":"html"}
created2018-04-11 07:40:00
last_update2018-04-11 07:40:00
depth0
children1
last_payout2018-04-18 07:40:00
cashout_time1969-12-31 23:59:59
total_payout_value16.399 HBD
curator_payout_value4.863 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length12,281
author_reputation98,202,866,830,354
root_title"Mathematics - Mathematical Analysis Advanced Plane Types"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id49,447,102
net_rshares4,699,578,508,711
author_curate_reward""
vote details (196)
@minnowsupport ·
<p>Congratulations!  This post has been upvoted from the communal account, @minnowsupport, by drifteritis from the Minnow Support Project. It's a witness project run by aggroed, ausbitbank, teamsteem, theprophet0, someguy123, neoxian, followbtcnews, and netuoso. The goal is to help Steemit grow by supporting Minnows.  Please find us at the <a href="https://discord.gg/HYj4yvw"> Peace, Abundance, and Liberty Network (PALnet) Discord Channel</a>.  It's a completely public and open space to all members of the Steemit community who voluntarily choose to be there.</p> <p>If you would like to delegate to the Minnow Support Project you can do so by clicking on the following links: <a href="https://v2.steemconnect.com/sign/delegateVestingShares?delegator=&amp;delegatee=minnowsupport&amp;vesting_shares=102530.639667%20VESTS">50SP</a>, <a href="https://v2.steemconnect.com/sign/delegateVestingShares?delegator=&amp;delegatee=minnowsupport&amp;vesting_shares=205303.639667%20VESTS">100SP</a>, <a href="https://v2.steemconnect.com/sign/delegateVestingShares?delegator=&amp;delegatee=minnowsupport&amp;vesting_shares=514303.639667%20VESTS">250SP</a>, <a href="https://v2.steemconnect.com/sign/delegateVestingShares?delegator=&amp;delegatee=minnowsupport&amp;vesting_shares=1025303.639667%20VESTS">500SP</a>, <a href="https://v2.steemconnect.com/sign/delegateVestingShares?delegator=&amp;delegatee=minnowsupport&amp;vesting_shares=2053030.639667%20VESTS">1000SP</a>, <a href="https://v2.steemconnect.com/sign/delegateVestingShares?delegator=&amp;delegatee=minnowsupport&amp;vesting_shares=10253030.639667%20VESTS">5000SP</a>. <br><strong>Be sure to leave at least 50SP undelegated on your account.</strong></p>
👍  
properties (23)
authorminnowsupport
permlinkre-mathematics-mathematical-analysis-advanced-plane-types-20180414t190415
categorymathematics
json_metadata""
created2018-04-14 19:04:18
last_update2018-04-14 19:04:18
depth1
children0
last_payout2018-04-21 19:04:18
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length1,707
author_reputation148,902,805,319,183
root_title"Mathematics - Mathematical Analysis Advanced Plane Types"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id50,078,173
net_rshares3,961,092,968
author_curate_reward""
vote details (1)