<html> <p><img src="http://www.jobsxs.com/wp-content/uploads/2017/11/examples-example.png"/></p> <p><a href="http://www.jobsxs.com/examples/examples-example/">Source</a></p> <p><br></p> <h2>Introduction</h2> <p>Hello it's a me again drifter1!<br> Today we will get into the promised <strong>examples/exercises</strong> for the whole Multivariable-part of my <strong>Mathematical Analysis series</strong> and so for every post starting from <a href="https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-vectors-lines-and-planes">Vectors, Lines, Planes</a> up to <a href="https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-surface-and-contour-integrals">Surface and Contour Integrals</a>.</p> <p> I will try to <strong>solve them in detail</strong> so that you understand every bit of my procedure of thinking and why I apply each calculation, theorem etc.</p> <p>Also, I will try <strong>"splitting" them based on the subtopic they are about</strong>...</p> <p>So, without further do, let's get straight into it!</p> <p><br></p> <h2>Vectors, Lines and Planes</h2> <p>Examples based on the posts:</p> <ul> <li><a href="https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-vectors-lines-and-planes">Vectors, Lines and Planes</a></li> <li><a href="https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-advanced-plane-types">Advanced Plane Types</a></li> </ul> <p><br></p> <p><strong>1.</strong> </p> <p>Suppose we have the following Planes/Surfaces.</p> <p>E1: 5x + y - z = 10</p> <p>E2: x - 2y + 3z = -1</p> <p>What is the angle φ(E1, E2) between them?</p> <p><br></p> <p> The angle is of course equal to the same angle of the normal vectors N1 and N2 on top of surface E1 and E2 correspondingly.</p> <p>That way we will find the angle φ(N1, N2) = φ(E1, E2).</p> <p><br></p> <p>Using the coefficients of x, y and z for each plane we can find the corresponding N'vectors and so:</p> <p>N1 = (5, 1, -1)</p> <p>N2 = (1, -2, 3)</p> <p><br></p> <p>The crossproduct of them gives us the following determinant:</p> <p><img src="http://quicklatex.com/cache3/d0/ql_1fd60b4bb47139215ac5df1d35e07ad0_l3.png"/></p> <p><a href="http://quicklatex.com/">quicklatex</a></p> <p>which of course is the vector: (1, -16, 11)</p> <p>And so:</p> <p><img src="http://quicklatex.com/cache3/ec/ql_0c357b65e5cdb299124501f956857bec_l3.png"/></p> <p><a href="http://quicklatex.com/">quicklatex</a></p> <p><br></p> <p>Because the crossproduct is |ab| = |a||b|sinφ we find the angle like that:</p> <p><img src="http://quicklatex.com/cache3/ec/ql_8dd0cf7f445ef18fa03c6f3af4c0ceec_l3.png"/></p> <p><a href="http://quicklatex.com/">quicklatex</a></p> <p><br></p> <p><br></p> <p><strong>2.</strong> </p> <p>Suppose a surface E that:</p> <ul> <li>passes through P(4, 2, 1)</li> <li>is vertical across to N(6, -2, 3)</li> </ul> <p>Calculate the distance of the center O(0, 0, 0) to the surface and so:</p> <p>d(O, E) = ?</p> <p><br></p> <p>N is of course a normal vector of the plane and because the plane also passes from P we have:</p> <p>6(x - 4) - 2(y - 2) + 3(z - 1) = 0 =></p> <p>E: 6x - 2y + 3z = 23</p> <p><br></p> <p>Let's suppose another point P'(x0, y0, z0) on top of the plane so that OP' is parallel to N.</p> <p>This means that:</p> <p>OP' x N = 0 =></p> <p><img src="http://quicklatex.com/cache3/29/ql_8cadf26b3fb5dd453dafb47229efd529_l3.png"/></p> <p><a href="http://quicklatex.com/">quicklatex</a></p> <p><br></p> <p>And so we end up with a system of 3 linear equations:</p> <p>3y0 - 2z0 = 0</p> <p>3x0 - 6z0 = 0</p> <p>-2x0 - 6y0 = 0</p> <p><br></p> <p>Which means that:</p> <p>z0 = 3y0/2 = 3x0/6</p> <p>y0 = -2x0/6</p> <p>and so because P' is on top of E we have:</p> <p><img src="http://quicklatex.com/cache3/ee/ql_ebbeec4f706effaa244ee5f9903e44ee_l3.png"/></p> <p><a href="http://quicklatex.com/">quicklatex</a></p> <p>By putting this values in the equations of before we end up with:</p> <p><img src="http://quicklatex.com/cache3/c1/ql_58adf2da8352c95172a77d6fce46ddc1_l3.png"/></p> <p><a href="http://quicklatex.com/">quicklatex</a></p> <p><br></p> <p>And because d(O, E) = d(O, P') we have:</p> <p><img src="http://quicklatex.com/cache3/ec/ql_c816cb291d29dd408bd81958d5c72fec_l3.png"/></p> <p><a href="http://quicklatex.com/">quicklatex</a></p> <p><br></p> <h2>Vector functions and Partial Derivatives</h2> <p>Examples based on the posts:</p> <ul> <li><a href="https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-multivariable-and-vector-functions">Multivariable and Vector Functions</a></li> <li><a href="https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-partial-derivatives">Partial Derivatives</a></li> <li><a href="https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-directional-derivatives">Directional Derivatives</a></li> <li><a href="https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-total-differential">Total Differential</a></li> </ul> <p><br></p> <p><strong>1.</strong> </p> <p>Suppose the linear approximation of a curve r(t):</p> <p>T = (dx/dt, dy/dt, dz/dt) = (1 + sint, 2cos(2t), -3sin(3t))</p> <p>Find the line ε that:</p> <ul> <li>is vertical across to r(t)</li> <li>and that passes through Pt(x(t), y(t), z(t)) for t = π/2</li> </ul> <p><br></p> <p>For t = π/2:</p> <p>T(π/2) = (1+1, -2, 3) = (2, -2, 3)</p> <p><br></p> <p>Because ε is vertical across it's parallel to the normal vector N.</p> <p>We know that N = (∂r/∂x, ∂r/∂y, ∂r/∂z) and so:</p> <p>N = (t - cost, 3tsin(2t), 1+cos(3t)) and for t = π/2 =></p> <p>N = (π/2, 3, 1)</p> <p><br></p> <p>And so from the parametric representation of a line we have:</p> <p>x = x0 + at</p> <p>y = y0 + bt</p> <p>z = z0 + ct</p> <p>By setting (x0, y0, z0) = (π/2, 3, 1) we get:</p> <p>x = π/2 + π/2t</p> <p>y = 3+3t</p> <p>z = 1 + t</p> <p>or</p> <p><img src="http://quicklatex.com/cache3/3b/ql_8eeeda4b7d5812ea2c527069c51c4f3b_l3.png"/></p> <p><a href="http://quicklatex.com/">quicklatex</a></p> <p><br></p> <p>By using the normal vector N we can also find plane E that contains the Point Pt.</p> <p>E: a(x - x0) + b(y - y0) + c(z - z0) = 0 => ... =></p> <p><img src="http://quicklatex.com/cache3/37/ql_7a7630154fffb656684d0704373b7c37_l3.png"/></p> <p><a href="http://quicklatex.com/">quicklatex</a></p> <p><br></p> <p><strong>2.</strong> </p> <p>Suppose the function:</p> <p><img src="http://quicklatex.com/cache3/e0/ql_eee19c2bd0e860d8018f3c90669b33e0_l3.png"/></p> <p>Calculate the range of Duf(P) = ∇T(P) * u at P = (0, 0)</p> <p><br></p> <p>We know that Duf(P) is between two values:</p> <ol> <li>The highest possible increase |∇f(P)| and</li> <li>The highest possible decrease -|∇f(P)|</li> </ol> <p>cause Duf(P) = ∇f(P) * u = |∇f(P) ||u|*cosφ</p> <p>and so the highest increase is when φ =0 and the highest decrease when φ = π</p> <p><br></p> <p> ∇T(x, y) = (∂T/∂x, ∂T/∂y) = <img src="http://quicklatex.com/cache3/d4/ql_5f4352cc61c0a7a8393bc1aff8f7c8d4_l3.png"/></p> <p>For the point (x, y) = (0, 0) this becomes: (1, 1)</p> <p><br></p> <p>And so the highest possible increase is:</p> <p><img src="http://quicklatex.com/cache3/3e/ql_f8e642d813aa3d8813fb23437876aa3e_l3.png"/></p> <p><br></p> <p>The highest possible decrease is of course the negative of that...</p> <p>And so the range of Duf(P) is:</p> <p><img src="http://quicklatex.com/cache3/ef/ql_816e3376601e99198715d7f4eb3229ef_l3.png"/> </p> <p><a href="http://quicklatex.com/">quicklatex</a></p> <p><br></p> <p><br></p> <p><strong>3.</strong> </p> <p>Suppose we have the total differential:</p> <p><img src="http://quicklatex.com/cache3/72/ql_993afbf68fd4322eb4a5b450533daf72_l3.png"/></p> <p>Find a function f (if it exists) that has this df.</p> <p><br></p> <p>From theory we know that:</p> <p>df = Mdx + Ndy represents the total differential of a function f only if:</p> <p>My = Nx <=> ∂M/∂y = ∂N/∂x</p> <p>that can be easily proven...</p> <p><br></p> <p>Let's check if that is true...</p> <p><img src="http://quicklatex.com/cache3/b7/ql_fce40f55d80663a6ef6d7ffe7c92b9b7_l3.png"/></p> <p><a href="http://quicklatex.com/">quicklatex</a></p> <p>We can clearly see that My = Nx and so there exists an f with this df.</p> <p><br></p> <p>Let's now find this function...</p> <p>M = x + e^(x,/y) = ∂f/∂x =></p> <p><img src="http://quicklatex.com/cache3/4c/ql_fb5d1b1278db1ca687bd8e09de6c3c4c_l3.png"/></p> <p><br></p> <p>N = ∂f/∂y =></p> <p><img src="http://quicklatex.com/cache3/5e/ql_5946206d4a760485fda4beb81a85b85e_l3.png"/></p> <p>and so:</p> <p><img src="http://quicklatex.com/cache3/e4/ql_5b2fc57b102b8bae7e1f3eb808a93ae4_l3.png"/></p> <p><a href="http://quicklatex.com/">quicklatex</a></p> <p><br></p> <h2>Surface and Contour Integrals</h2> <p>Examples based on the posts:</p> <ul> <li><a href="https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-double-and-multiple-integrals"> Double and Multiple Integrals</a></li> <li><a href="https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-surface-and-contour-integrals"> Surface and Contour Integrals</a></li> </ul> <p><br></p> <p><strong>1.</strong> </p> <p>Calculate the surface integral:</p> <p><img src="http://quicklatex.com/cache3/54/ql_a71cf2497552c988dae2731f39463254_l3.png"/></p> <p><a href="http://quicklatex.com/">quicklatex</a></p> <p><br></p> <p>The "inner" integral doesn't contain x and so is a "constant" which means that:</p> <p><img src="http://quicklatex.com/cache3/d6/ql_e9b0f51900c2d32e74556fb961f1eed6_l3.png"/></p> <p><a href="http://quicklatex.com/">quicklatex</a></p> <p>Because we have an subroot we substitute using:</p> <p>y = 2sint => dy = 2costdt</p> <p>which gets us to the range:</p> <p>y -> 0 => t -> 0</p> <p>y -> 2 => t -> π/2</p> <p>and so:</p> <p><img src="http://quicklatex.com/cache3/a6/ql_f97a460a7287af471716ba7a4f530ea6_l3.png"/></p> <p>cos^2t = 1 + cos(2t) / 2 and so:</p> <p><img src="http://quicklatex.com/cache3/15/ql_e98ba8ba20fb7ef69ce25108d5feaa15_l3.png"/></p> <p><a href="http://quicklatex.com/">quicklatex</a></p> <p><br></p> <p><br></p> <p><br></p> <p><strong>2.</strong> </p> <p>Tranform the contour integral to an Surface one:</p> <p><img src="http://quicklatex.com/cache3/d7/ql_5f52ca025a07cb8e374d018b567191d7_l3.png"/></p> <p><a href="http://quicklatex.com/">quicklatex</a></p> <p><br></p> <p>Using Green's theorem we get:</p> <p><img src="http://quicklatex.com/cache3/99/ql_006722bdf45ffaa4a8cce0eb9a0bde99_l3.png"/></p> <p><br></p> <p>Changing to the polar coordinate space we can also get:</p> <p><img src="http://quicklatex.com/cache3/30/ql_5fb67c34cf2b5bc2d74b88216552dc30_l3.png"/></p> <p><br></p> <p> Knowing the ranges of x and y (or r and θ) and so the Area R or G we can then calculate the actual value of I.</p> <p><br></p> <p>And this is actually it for today and I hope that you enjoyed those examples!</p> <p>From next time in Mathematics we will get into a new "branch" of Mathematics :)</p> <p>Bye!</p> </html>
author | drifter1 |
---|---|
permlink | mathematics-mathematical-analysis-multivariable-examples |
category | mathematics |
json_metadata | {"tags":["mathematics","analysis","examples","steemiteducation","steemstem"],"image":["http://www.jobsxs.com/wp-content/uploads/2017/11/examples-example.png","http://quicklatex.com/cache3/d0/ql_1fd60b4bb47139215ac5df1d35e07ad0_l3.png","http://quicklatex.com/cache3/ec/ql_0c357b65e5cdb299124501f956857bec_l3.png","http://quicklatex.com/cache3/ec/ql_8dd0cf7f445ef18fa03c6f3af4c0ceec_l3.png","http://quicklatex.com/cache3/29/ql_8cadf26b3fb5dd453dafb47229efd529_l3.png","http://quicklatex.com/cache3/ee/ql_ebbeec4f706effaa244ee5f9903e44ee_l3.png","http://quicklatex.com/cache3/c1/ql_58adf2da8352c95172a77d6fce46ddc1_l3.png","http://quicklatex.com/cache3/ec/ql_c816cb291d29dd408bd81958d5c72fec_l3.png","http://quicklatex.com/cache3/3b/ql_8eeeda4b7d5812ea2c527069c51c4f3b_l3.png","http://quicklatex.com/cache3/37/ql_7a7630154fffb656684d0704373b7c37_l3.png","http://quicklatex.com/cache3/e0/ql_eee19c2bd0e860d8018f3c90669b33e0_l3.png","http://quicklatex.com/cache3/d4/ql_5f4352cc61c0a7a8393bc1aff8f7c8d4_l3.png","http://quicklatex.com/cache3/3e/ql_f8e642d813aa3d8813fb23437876aa3e_l3.png","http://quicklatex.com/cache3/ef/ql_816e3376601e99198715d7f4eb3229ef_l3.png","http://quicklatex.com/cache3/72/ql_993afbf68fd4322eb4a5b450533daf72_l3.png","http://quicklatex.com/cache3/b7/ql_fce40f55d80663a6ef6d7ffe7c92b9b7_l3.png","http://quicklatex.com/cache3/4c/ql_fb5d1b1278db1ca687bd8e09de6c3c4c_l3.png","http://quicklatex.com/cache3/5e/ql_5946206d4a760485fda4beb81a85b85e_l3.png","http://quicklatex.com/cache3/e4/ql_5b2fc57b102b8bae7e1f3eb808a93ae4_l3.png","http://quicklatex.com/cache3/54/ql_a71cf2497552c988dae2731f39463254_l3.png","http://quicklatex.com/cache3/d6/ql_e9b0f51900c2d32e74556fb961f1eed6_l3.png","http://quicklatex.com/cache3/a6/ql_f97a460a7287af471716ba7a4f530ea6_l3.png","http://quicklatex.com/cache3/15/ql_e98ba8ba20fb7ef69ce25108d5feaa15_l3.png","http://quicklatex.com/cache3/d7/ql_5f52ca025a07cb8e374d018b567191d7_l3.png","http://quicklatex.com/cache3/99/ql_006722bdf45ffaa4a8cce0eb9a0bde99_l3.png","http://quicklatex.com/cache3/30/ql_5fb67c34cf2b5bc2d74b88216552dc30_l3.png"],"links":["http://www.jobsxs.com/examples/examples-example/","https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-vectors-lines-and-planes","https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-surface-and-contour-integrals","https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-advanced-plane-types","http://quicklatex.com/","https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-multivariable-and-vector-functions","https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-partial-derivatives","https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-directional-derivatives","https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-total-differential","https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-double-and-multiple-integrals"],"app":"steemit/0.1","format":"html"} |
created | 2018-04-24 18:50:06 |
last_update | 2018-04-24 18:50:06 |
depth | 0 |
children | 5 |
last_payout | 2018-05-01 18:50:06 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 19.094 HBD |
curator_payout_value | 5.521 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 11,211 |
author_reputation | 98,202,866,830,354 |
root_title | "Mathematics - Mathematical Analysis Multivariable examples" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 51,918,485 |
net_rshares | 3,754,880,254,879 |
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
berniesanders | 0 | 4,132,377,844 | 2.5% | ||
pharesim | 0 | 75,933,865,234 | 0.19% | ||
kushed | 0 | 325,343,793,994 | 25% | ||
nextgencrypto | 0 | 71,086,943,366 | 2.5% | ||
steemychicken1 | 0 | 36,841,110,948 | 25% | ||
steemservices | 0 | 6,855,310,380 | 2.5% | ||
joseph | 0 | 49,079,818,259 | 25% | ||
aizensou | 0 | 91,313,909,923 | 25% | ||
b0y2k | 0 | 273,012,957,798 | 25% | ||
stoner19 | 0 | 9,335,409,679 | 25% | ||
drifter1 | 0 | 13,297,282,158 | 100% | ||
richman | 0 | 77,012,350,986 | 25% | ||
razvanelulmarin | 0 | 28,763,700,887 | 25% | ||
anyx | 0 | 187,889,059,586 | 20% | ||
raymondspeaks | 0 | 3,219,662,387 | 25% | ||
knozaki2015 | 0 | 462,596,823,608 | 25% | ||
shawnamawna | 0 | 8,132,317,863 | 25% | ||
hagie | 0 | 29,490,942,582 | 25% | ||
coinbar | 0 | 4,465,076,905 | 25% | ||
ozchartart | 0 | 73,392,010,317 | 2.5% | ||
caesarion | 0 | 5,263,446,742 | 25% | ||
thebluepanda | 0 | 47,218,755,476 | 25% | ||
yoshiko | 0 | 84,268,872,312 | 25% | ||
thisisbenbrick | 0 | 10,293,723,950 | 25% | ||
sirwinchester | 0 | 39,471,968,462 | 25% | ||
kiddarko | 0 | 4,981,478,070 | 5% | ||
einsteinpotsdam | 0 | 7,594,834,876 | 25% | ||
dadview | 0 | 1,248,343,092 | 3% | ||
zahnspange | 0 | 580,311,998,511 | 25% | ||
thecyclist | 0 | 54,120,158,348 | 2.5% | ||
steemsquad | 0 | 2,581,746,761 | 25% | ||
allesgruen | 0 | 2,702,169,890 | 25% | ||
dannystravels | 0 | 19,697,890,450 | 25% | ||
jerryblanceton | 0 | 7,123,458,747 | 25% | ||
platinum-blue | 0 | 49,971,034,910 | 25% | ||
koskl | 0 | 7,006,398,629 | 100% | ||
ssekulji | 0 | 27,837,478,555 | 25% | ||
timbernana | 0 | 10,393,337,146 | 25% | ||
sherlockcupid | 0 | 26,955,240,556 | 25% | ||
dark.horse | 0 | 5,559,989,875 | 25% | ||
adventureevryday | 0 | 5,040,560,260 | 10% | ||
toyman | 0 | 13,211,801,148 | 25% | ||
i-gordan | 0 | 16,307,037,802 | 25% | ||
yougotflagged | 0 | 9,014,230,728 | 2.5% | ||
buzzbeergeek | 0 | 4,949,232,420 | 10% | ||
estronitex | 0 | 6,304,706,885 | 100% | ||
bigdaddy | 0 | 20,942,670,009 | 25% | ||
kingsmind | 0 | 4,954,735,061 | 25% | ||
steemitcitizen | 0 | 412,047,571 | 5% | ||
romedog | 0 | 253,808,793,824 | 25% | ||
sunshinetraveler | 0 | 12,810,094,961 | 25% | ||
andrewfalcon | 0 | 78,712,201 | 100% | ||
spg | 0 | 8,480,766,223 | 25% | ||
freefuture | 0 | 6,488,062,309 | 25% | ||
kinakomochi | 0 | 16,893,384,834 | 25% | ||
trumpman | 0 | 332,075,185,799 | 100% | ||
derrick829 | 0 | 14,307,607,202 | 1% | ||
sammosk | 0 | 2,194,673,949 | 25% | ||
arbitrarykitten | 0 | 8,484,115,361 | 25% | ||
biancajapan | 0 | 7,801,080,093 | 25% | ||
ruth-girl | 0 | 27,698,997,580 | 20% | ||
thedelegator | 0 | 25,961,125,423 | 2.5% | ||
horsepower | 0 | 4,386,516,996 | 25% | ||
stitchybitch | 0 | 10,282,481,747 | 25% | ||
themarkymark | 0 | 44,249,397,046 | 25% | ||
avesa | 0 | 395,684,967 | 0.1% | ||
minimalpris | 0 | 14,186,084,243 | 100% | ||
teneiced | 0 | 4,277,628,254 | 25% | ||
sumayyahsaidso | 0 | 4,117,563,024 | 25% | ||
simplifylife | 0 | 151,006,178 | 0.1% | ||
kriptonoob | 0 | 721,657,561 | 1% | ||
ngc | 0 | 19,373,298,108 | 2.5% | ||
mrfelix | 0 | 5,032,986,610 | 100% | ||
donaldpete | 0 | 360,580,810 | 100% | ||
patricklancaster | 0 | 622,304,036 | 5% | ||
dream-o | 0 | 8,509,958,826 | 25% | ||
linkyourlife | 0 | 3,593,935,586 | 25% | ||
teslaman | 0 | 4,960,418,188 | 25% | ||
blondephysics | 0 | 5,642,080,994 | 25% |
Good approach. Your work is really great; i love all of it. I saw your recap post, it was really awesome! You have a new friend and follower! I will definitely be in touch with this blog.
author | mrfelix |
---|---|
permlink | re-drifter1-mathematics-mathematical-analysis-multivariable-examples-20180501t012246812z |
category | mathematics |
json_metadata | {"tags":["mathematics"],"app":"steemit/0.1"} |
created | 2018-05-01 01:22:51 |
last_update | 2018-05-01 01:22:51 |
depth | 1 |
children | 2 |
last_payout | 2018-05-08 01:22:51 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.072 HBD |
curator_payout_value | 0.018 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 187 |
author_reputation | 8,524,762,251,885 |
root_title | "Mathematics - Mathematical Analysis Multivariable examples" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 53,138,415 |
net_rshares | 16,079,016,307 |
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
drifter1 | 0 | 11,297,245,662 | 100% | ||
mrfelix | 0 | 4,781,770,645 | 100% |
Thank you! You are so kind. Very happy to have you join my journey to the Moon...Ehmm I mean I'm glad that you enjoy my posts and I will be checking on your blog too, from time to time... Seems like you also blog about great stuff :)
author | drifter1 |
---|---|
permlink | re-mrfelix-re-drifter1-mathematics-mathematical-analysis-multivariable-examples-20180501t084338860z |
category | mathematics |
json_metadata | {"tags":["mathematics"],"app":"steemit/0.1"} |
created | 2018-05-01 08:43:36 |
last_update | 2018-05-01 08:44:09 |
depth | 2 |
children | 1 |
last_payout | 2018-05-08 08:43:36 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.090 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 233 |
author_reputation | 98,202,866,830,354 |
root_title | "Mathematics - Mathematical Analysis Multivariable examples" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 53,195,165 |
net_rshares | 15,725,089,960 |
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
drifter1 | 0 | 10,848,942,263 | 100% | ||
mrfelix | 0 | 4,876,147,697 | 100% |
Thank you boss. > Seems like you also blog about great stuff :) ...woudn't know exactly what kinda contents appeal to you, but i definitely do what i gotta do, i just hope you like 'em.
author | mrfelix |
---|---|
permlink | re-drifter1-re-mrfelix-re-drifter1-mathematics-mathematical-analysis-multivariable-examples-20180502t002129915z |
category | mathematics |
json_metadata | {"tags":["mathematics"],"app":"steemit/0.1"} |
created | 2018-05-02 00:21:36 |
last_update | 2018-05-02 00:21:36 |
depth | 3 |
children | 0 |
last_payout | 2018-05-09 00:21:36 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.064 HBD |
curator_payout_value | 0.003 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 186 |
author_reputation | 8,524,762,251,885 |
root_title | "Mathematics - Mathematical Analysis Multivariable examples" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 53,335,256 |
net_rshares | 12,170,911,611 |
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
drifter1 | 0 | 7,483,518,018 | 100% | ||
mrfelix | 0 | 4,687,393,593 | 100% |
Very explicit. Just as a suggestion @drifter1...i would love you to add the immediate past publication of each particular series you write about: something like... PREVIOUSLY ON THIS SERIES: [Mathematical Analysis - Surface and Contour Integrals](https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-surface-and-contour-integrals) Just for ease of navigation.
author | prettyrose |
---|---|
permlink | re-drifter1-mathematics-mathematical-analysis-multivariable-examples-20180501t010844469z |
category | mathematics |
json_metadata | {"tags":["mathematics"],"links":["https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-surface-and-contour-integrals"],"app":"steemit/0.1"} |
created | 2018-05-01 01:08:48 |
last_update | 2018-05-01 01:08:48 |
depth | 1 |
children | 1 |
last_payout | 2018-05-08 01:08:48 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.084 HBD |
curator_payout_value | 0.011 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 385 |
author_reputation | 5,556,941,549,687 |
root_title | "Mathematics - Mathematical Analysis Multivariable examples" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 53,136,736 |
net_rshares | 16,652,711,005 |
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
drifter1 | 0 | 11,745,549,061 | 100% | ||
mrfelix | 0 | 4,907,161,944 | 100% |
Yes, I'm trying to add the previous posts of those series, but sometimes I forget :P Maybe I should do it from now on so that it becomes an habit...
author | drifter1 |
---|---|
permlink | re-prettyrose-re-drifter1-mathematics-mathematical-analysis-multivariable-examples-20180501t084016548z |
category | mathematics |
json_metadata | {"tags":["mathematics"],"app":"steemit/0.1"} |
created | 2018-05-01 08:40:12 |
last_update | 2018-05-01 08:40:12 |
depth | 2 |
children | 0 |
last_payout | 2018-05-08 08:40:12 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.064 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 148 |
author_reputation | 98,202,866,830,354 |
root_title | "Mathematics - Mathematical Analysis Multivariable examples" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 53,194,708 |
net_rshares | 11,476,567,022 |
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
drifter1 | 0 | 11,476,567,022 | 100% |