create account

Mathematics - Mathematical Analysis Series Convergence Tests by drifter1

View this thread on: hive.blogpeakd.comecency.com
· @drifter1 ·
$18.47
Mathematics - Mathematical Analysis Series Convergence Tests
<html>
<p><img src="https://sites.google.com/site/calculusproject13/_/rsrc/1472871578846/home/INFINITE%20SERIES%20HANDOUT.jpg" width="991" height="1083"/></p>
<p>&nbsp;&nbsp;&nbsp;&nbsp;Hello it's me again drifter1! Today we continue with <strong>Mathematical Analysis</strong> getting into more about <strong>Series</strong>. After talking about the Basics in my last post <a href="https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-series-basics">here</a>, we will now get into how we<strong> test the Convergence</strong>. So, without further do, let's get started!</p>
<h2>Cauchy's Convergence Criterion:</h2>
<p>A Series s converges only when for every e&gt;0 &nbsp;there is a natural number n0 such that:&nbsp;</p>
<p>|S| &lt; e =&gt; |a(n) + a(n+1) + ... + a(n+m)| &lt; e for every m, n with m&gt;=n&gt;n0</p>
<p>We can also describe it as:</p>
<ul>
  <li>for every e&gt;0 there is a natural n0 such that |Sm - Sn| &lt; e for every m, n with m&gt;=n&gt;n0</li>
  <li>for every e&gt;0 there are natural p, n0&lt;=n such that |S(n+p) - Sn| &lt; e &nbsp;&lt;=&gt; &nbsp;lim n-&gt;∞ (S(n+p) - Sn) = 0</li>
</ul>
<p><strong>Example proof:</strong></p>
<p>Using this Criterion we can easily proof that the harmonic series with p=1 (1/n terms) diverges.</p>
<p>For m = 2n there is a n0 so that for every e&gt;0 and n&gt;=n0: |S2n - Sn| &lt; e</p>
<p>The generic term of such a series is a(n) = 1/n and so:</p>
<p>S2n - Sn = 1/n+1 + 2/n+2 + ... + n/2n &gt; n/2n = 1/2 =&gt; |S2n - Sn| &gt;= 1/2.</p>
<p>And so Cauchy's criterion is not true and the series diverges.</p>
<p><br></p>
<p>So, where does this help us?</p>
<p>Well, think about the <strong>limit of (an) as a testing method of convergence</strong>.</p>
<ul>
  <li>When the series converges then the lim n-&gt;∞ (an) = 0</li>
  <li>If lim n-&gt;∞(an) !=0 then the series diverges</li>
</ul>
<p><em><strong>ATTENTION:</strong></em><em> </em><strong>It doesn't mean that a sequence converges when the limit is 0</strong>, but <strong>if it isn't 0 then we are 100% sure that the series diverges</strong>. Think about the harmonic series from before, where the limit of 1/n to infinity is equal to 0, but the series diverges!</p>
<p><br></p>
<h2>Sequence Boundary Test:</h2>
<p>Suppose s is positive series (an &gt;=0 for every natural n).</p>
<ol>
  <li>s converges only if the sum of n-terms (sn = a1 + a2 + ...+ an) is bounded</li>
  <li>s diverges if the sum of n-terms (sn = a1 + a2 + ...+ an) is not-bounded</li>
</ol>
<h2><br></h2>
<h2>Comparison Test:</h2>
<p>Suppose s1 and s2 are two positive series with terms an and bn and 0 &lt;= an &lt;= bn for every natural n.</p>
<ul>
  <li>If s2 converges then s1 converges also</li>
  <li>If s2 diverges to ∞ then s1 also diverges to ∞</li>
</ul>
<p>&nbsp;&nbsp;&nbsp;&nbsp;This means that we can check the convergence/divergence of a "greater" series to check the convergence/divergence of a "smaller" series.</p>
<p><br></p>
<h2>Series Addition Convergence:</h2>
<p>&nbsp;&nbsp;&nbsp;&nbsp;Suppose the Series s1, s2 with terms an, bn and the real numbers k, l. If the series converge to a and b respectively then the series S with term k*an + l*bn converges to k*a + l*b.</p>
<p>Cases:</p>
<ul>
  <li>If both converge then the result series S also converges</li>
  <li>If at least one diverges then the result series S also diverges</li>
</ul>
<p>So,<strong> in a sum of Series,</strong> <strong>if at least one diverges then the whole result also diverges</strong>!</p>
<p><br></p>
<h2>Condensation Test:</h2>
<p>Suppose (an) is a decreasing positive sequence (an&gt;=an+1&gt;=0).</p>
<ol>
  <li>The <strong>series with term (an) converges</strong> <strong>only if the series with term 2^k*a(2^k) converges</strong> and vise versa</li>
  <li>In the same way <strong>if one diverges then the other diverges too</strong></li>
</ol>
<p><br></p>
<p><strong>Application:</strong></p>
<p>Let's talk about <strong>harmonic series of p-degree</strong> with p being a real number and terms 1/n^p.</p>
<ul>
  <li>The series <strong>converges when p&gt;1</strong></li>
  <li>The series <strong>diverges to +∞ when p&lt;=1</strong></li>
</ul>
<p>This can be proven easily using the condensation test.</p>
<p>For p&lt;=0 we get a series with terms n^k, with k =-p and so the series diverges to +∞.</p>
<p>For p&gt;0 and using the condensation test we check the convergence of the series with term:</p>
<p>2^k/(2^k)^p = 2^(1-p)^k = x^k, where x^k is a geometric series and so we have that:</p>
<p>The series converges when: 2^(1-p) &lt; 1 = 2^0 =&gt; p &gt; 1&nbsp;</p>
<p>The series diverges when: 2^(1-p) &gt;= 1 = 2^0 =&gt; p &lt;= 1</p>
<p>&nbsp;&nbsp;&nbsp;&nbsp;We know that the first series also converges/diverges for the same values, because of the condensation convergence test.</p>
<p><br></p>
<h2>Limit comparison test:</h2>
<p>Suppose the series s1, s2 with positive terms an and bn and the limit n-&gt;∞ (an/bn) = k.</p>
<ol>
  <li>If 0 &lt; k &lt; + ∞ then s1 and s2 converge/diverge together</li>
  <li>If k = 0 then if s2 converges then s1 also converges (NOT vise versa)</li>
  <li>If k = +∞ then if s1 converges then s2 also converges (NOT vise versa)</li>
</ol>
<p>This is pretty useful in series build up of polynomial sequences.</p>
<p><br></p>
<h2>Ratio test:</h2>
<p>Suppose s is a non-zero series with term (an) and lim n-&gt;∞|a(n+1)/an| = l, with l &gt; 0.</p>
<ol>
  <li>If l &lt; 1 then the series converges</li>
  <li>If l &gt; 1 then the series diverges to +∞ and lim n-&gt;∞ (an) != 0</li>
  <li>If l =1 then we don't know and need to use some other test.</li>
</ol>
<p>This one is pretty useful when having a rational term build up of exponentials, factorials and more.</p>
<h2>n-root Test:</h2>
<p>Suppose s a series with term (an) and lim n-&gt;∞ [n-root(|an|)] = l, with l &gt; 0.</p>
<ol>
  <li>If 0 &lt;= l &lt; 1 then the series converges</li>
  <li>If l &gt; 1 then the series diverges to +∞</li>
  <li>If l = 1 then we don't know and need to use some other test.</li>
</ol>
<p>This one is pretty useful in series build up of polynomial sequences to get rid of high exponentials.</p>
<p><br></p>
<h2>Absolute test:</h2>
<p>When s is a Series build up of terms (an) and |s| is a sereis build up of terms |(an)| then:</p>
<ul>
  <li>If |s| converges then s also converges, but the opposite is not true!</li>
  <li>We don't know about divergence</li>
</ul>
<p><br></p>
<h2>Integral test:</h2>
<p>Suppose a integratable, positive and increasing function f:[1, +∞) -&gt; R.</p>
<p>The definite integral:</p>
<p><img src="https://s8.postimg.org/6e5al0p6d/Screenshot_1.jpg" width="98" height="57"/></p>
<p>and the Series:</p>
<p><img src="https://s8.postimg.org/9kzu4nhc5/Screenshot_2.jpg" width="99" height="52"/></p>
<p>converge/diverge together.</p>
<p>When their converge then we know that <em>I &lt; s &lt; I + f(1)</em> with I:</p>
<p><img src="https://s8.postimg.org/c2blby3th/Screenshot_3.jpg" width="209" height="60"/></p>
<p><br></p>
<h2>Leibniz Criterion for Alternating Series:</h2>
<p>&nbsp;&nbsp;&nbsp;&nbsp;<strong>When the absolute value of the terms of an alternating series are a decreasing and null-sequence then the series converges</strong>.</p>
<p>So, for an alternating series with term (-1)^(n+1) * (an) we have that <strong>it converges when</strong>:</p>
<ul>
  <li><strong>a(n) &gt;= a(n+1) &gt;= 0</strong> for every natural n</li>
  <li><strong>lim n-&gt;∞ (an) = 0</strong></li>
</ul>
<p><br></p>
<p><strong>Sum/Limit approximation:</strong></p>
<p>When such a series converges then we can calculate the limit approximately.</p>
<p>The sum of n-terms is: a1 - a2 + a3 - ... + (-1)^(n+1)*(an).</p>
<p>This value comes close to the sum of our series s having an error.</p>
<p>The value of this error is smaller then the absolute value of the (n+1)-term: |s - Sn| &lt;= an+1</p>
<p>The remainder (s-Sn) has the same sign as the (n+1)-term.</p>
<p><br></p>
<p>And this is actually it for today and I hope you learned something!</p>
<p>&nbsp;&nbsp;&nbsp;&nbsp;The post would become too clumped up if I also put Examples for everything today. That's why we will get into examples for all (or some) of the convergence tests we covered today in my next post.&nbsp;</p>
<p>Until next time...Bye!</p>
</html>
👍  , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and 19 others
properties (23)
authordrifter1
permlinkmathematics-mathematical-analysis-series-convergence-tests
categorymathematics
json_metadata{"tags":["mathematics","analysis","series","convergence","tests"],"image":["https://sites.google.com/site/calculusproject13/_/rsrc/1472871578846/home/INFINITE%20SERIES%20HANDOUT.jpg","https://s8.postimg.org/6e5al0p6d/Screenshot_1.jpg","https://s8.postimg.org/9kzu4nhc5/Screenshot_2.jpg","https://s8.postimg.org/c2blby3th/Screenshot_3.jpg"],"links":["https://steemit.com/mathematics/@drifter1/mathematics-mathematical-analysis-series-basics"],"app":"steemit/0.1","format":"html"}
created2017-12-15 06:59:00
last_update2017-12-15 06:59:00
depth0
children4
last_payout2017-12-22 06:59:00
cashout_time1969-12-31 23:59:59
total_payout_value14.268 HBD
curator_payout_value4.197 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length8,283
author_reputation98,202,866,830,354
root_title"Mathematics - Mathematical Analysis Series Convergence Tests"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id23,587,518
net_rshares2,911,322,956,106
author_curate_reward""
vote details (83)
@donquixotee ·
$0.07
Good post fit and interesting, I like your post,
For the future may be better posting and useful for all people in this steemit, thanks .. :)
👍  , , , , ,
properties (23)
authordonquixotee
permlinkre-drifter1-20171215t14017106z
categorymathematics
json_metadata{"tags":["mathematics","analysis","series","convergence","tests"],"app":"esteem/1.5.0","format":"markdown+html","community":"esteem"}
created2017-12-15 07:00:18
last_update2017-12-15 07:00:18
depth1
children0
last_payout2017-12-22 07:00:18
cashout_time1969-12-31 23:59:59
total_payout_value0.059 HBD
curator_payout_value0.015 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length141
author_reputation427,378,907,151
root_title"Mathematics - Mathematical Analysis Series Convergence Tests"
beneficiaries
0.
accountesteemapp
weight500
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id23,587,621
net_rshares12,502,848,244
author_curate_reward""
vote details (6)
@justtryme90 ·
$0.06
<center>![stem tag (2).jpg](https://steemitimages.com/DQmX1YcH47gVuujB4xd3de5b8xRANTnqmr2vC9AsP1wWDTo/stem%20tag%20(2).jpg)</center>
👍  
properties (23)
authorjusttryme90
permlinkre-drifter1-mathematics-mathematical-analysis-series-convergence-tests-20171216t020023009z
categorymathematics
json_metadata{"tags":["mathematics"],"image":["https://steemitimages.com/DQmX1YcH47gVuujB4xd3de5b8xRANTnqmr2vC9AsP1wWDTo/stem%20tag%20(2).jpg"],"app":"steemit/0.1"}
created2017-12-16 02:00:24
last_update2017-12-16 02:00:24
depth1
children0
last_payout2017-12-23 02:00:24
cashout_time1969-12-31 23:59:59
total_payout_value0.048 HBD
curator_payout_value0.015 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length132
author_reputation140,118,479,939,905
root_title"Mathematics - Mathematical Analysis Series Convergence Tests"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id23,694,328
net_rshares10,618,922,946
author_curate_reward""
vote details (1)
@nafazul ·
$0.06
Thank you for sharing informatiin my friend's @drifter1. I really like the post about the world of education, especially mathematics, because I am also a teacher of mathematics ... best regards my friends hope we can share knowledge in steemit.
👍  
properties (23)
authornafazul
permlinkre-drifter1-20171216t102912639z
categorymathematics
json_metadata{"tags":"mathematics","app":"esteem/1.4.6","format":"markdown+html","community":"esteem"}
created2017-12-16 03:29:24
last_update2017-12-16 03:29:24
depth1
children0
last_payout2017-12-23 03:29:24
cashout_time1969-12-31 23:59:59
total_payout_value0.045 HBD
curator_payout_value0.015 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length244
author_reputation2,151,415,065,087
root_title"Mathematics - Mathematical Analysis Series Convergence Tests"
beneficiaries
0.
accountesteemapp
weight500
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id23,701,018
net_rshares10,364,068,795
author_curate_reward""
vote details (1)
@podinatutorials ·
$0.10
Enough detail given
👍  ,
properties (23)
authorpodinatutorials
permlinkre-drifter1-mathematics-mathematical-analysis-series-convergence-tests-20180508t184827312z
categorymathematics
json_metadata{"tags":["mathematics"],"app":"steemit/0.1"}
created2018-05-08 18:48:30
last_update2018-05-08 18:48:30
depth1
children0
last_payout2018-05-15 18:48:30
cashout_time1969-12-31 23:59:59
total_payout_value0.081 HBD
curator_payout_value0.021 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length19
author_reputation1,246,112,992,923
root_title"Mathematics - Mathematical Analysis Series Convergence Tests"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id54,617,767
net_rshares21,370,196,923
author_curate_reward""
vote details (2)