create account

Mathematics - Ordinary first-order Differential equations (part 2) by drifter1

View this thread on: hive.blogpeakd.comecency.com
· @drifter1 · (edited)
$14.04
Mathematics - Ordinary first-order Differential equations (part 2)
<html>
<p>&nbsp;<img src="https://s14.postimg.org/d890sqd7l/part2.jpg" width="800" height="800"/></p>
<p>&nbsp;&nbsp;&nbsp;&nbsp;Hey it's me again drifter1! Today we continue with the 2nd part of <strong>first-order ODE's</strong> from my <strong>Mathematics </strong>series. There are 6 basic types in total and here we will discuss the 3 remaining. Exercises will come in the next post and will be about all the 1st-order types.</p>
<p>So, let's get straight into it!</p>
<p><br></p>
<h3>Linear n-order</h3>
<p>&nbsp;&nbsp;&nbsp;&nbsp;To understand what a 1st-order linear ODE is, we might first want to get into how n-order ones look and which constraints they have.</p>
<p>A <strong>n-order ODE is linear</strong> when:</p>
<ul>
  <li>The function and it's derivatives (y, y', y'', ..., y^(n)) don't come with exponentials/powers</li>
  <li>The coefficients of the function and it's derivatives are a function of x and so f(x) or a number c</li>
</ul>
<p><br></p>
<p>You might remember from last time that Homogeneous are converted into Separable ones.</p>
<p>&nbsp;&nbsp;&nbsp;&nbsp;In the same way, the 1st-order linear ODE's are very useful, cause Bernoulli ones get converted into a Linear ODE. Also, Riccati ones get converted into a Bernoulli and then into a Linear.</p>
<p>So, let's get into how we solve 1st-order linear ODE's.</p>
<h3>Solving Linear 1st-order ODE's</h3>
<p>A linear 1st-order ODE is of the form:</p>
<p><em><strong>y' + P(x)*y = Q(x)</strong></em></p>
<p><br></p>
<p>There are two main solving methods.</p>
<p><strong>Solution 1:</strong></p>
<p>Multiply both sides of the equation with a new function u = u(x).</p>
<p>We want a u so that: <em>u'y = Puy</em></p>
<p>Doing some calculations we end up with:</p>
<p><em>u = e ^ integral[P(x)dx]</em></p>
<p>and</p>
<p><em>y = (1/u) * integral[u*Q(x)dx]&nbsp;</em></p>
<p>That way we can find our solution y.</p>
<p><br></p>
<p><strong>Solution 2:</strong></p>
<p>We substitute y by setting <em>y(x) = g(x)*Y(x)</em></p>
<p>We want a g so that: <em>g'/g + P = 0</em> =&gt; <em>Y' = Q/g</em></p>
<p>By doing some calculations we end up with:</p>
<p><em>g = e ^[-integral(Pdx)]</em></p>
<p>and</p>
<p><em>Y = integral[(Q/g)dx] + c</em></p>
<p>That way with substitution again we get our y from g and Y.</p>
<p><br></p>
<h3>Solving Bernoulli ODE's</h3>
<p>A Bernoulli ODE is of the form:</p>
<p><em><strong>y' + P(x)y +Q(x)y^a = 0</strong></em>, where<em><strong> </strong></em><strong>a != 0,1</strong><em><strong> </strong></em>and real.</p>
<p>We solve<strong> u(x) = y(x) ^ (1-a)</strong> that will give us a linear ODE.</p>
<p>Solving the linear ODE with the previous method we get u.</p>
<p>From u we can then get our solution y.</p>
<p><br></p>
<h3>Solving Riccati ODE's</h3>
<p>A Riccati ODE is of the form:<br>
<em><strong>y' + P(x)*y^2 + Q(x)*y + R(x) = 0</strong></em></p>
<p><br></p>
<p>By substituting y with <em>y = Y + h</em> we end up with a <strong>sum of two ODE's</strong>:</p>
<ol>
  <li>A Bernoulli ODE with Y</li>
  <li>A Riccati with h</li>
</ol>
<p>&nbsp;&nbsp;&nbsp;&nbsp;We <strong>solve 1 to find Y from the Bernoulli ODE</strong> and <strong>h is given to us from the beginning as a solution of our ODE</strong>, or we can find it easily.</p>
<p>That way by substituting we get our final solution y.</p>
<p><br></p>
<blockquote>You can see that in general <strong>we try to do</strong> <strong>changes of the form</strong>: <em>y =gY + h</em></blockquote>
<p><br></p>
<h3>Image sources:</h3>
<p><a href="http://www.ivyzen.net/wp-content/uploads/2016/09/maths-problems-marilyn-ftr.jpg">http://www.ivyzen.net/wp-content/uploads/2016/09/maths-problems-marilyn-ftr.jpg</a><br>
</p>
<h3>Previous posts of the series:</h3>
<p><a href="https://steemit.com/mathematics/@drifter1/mathematics-differential-equations-introduction">Introduction </a>-&gt; Definition and Applications</p>
<p><a href="https://steemit.com/mathematics/@drifter1/mathematics-ordinary-first-order-differential-equations-part-1">First-order part(1) </a>-&gt; &nbsp;Separable, homogeneous and exact 1st-order ODE's</p>
<p><br>
And this is it for today and I hope that you enjoyed it!</p>
<p>Next time we will get into exercises for 1st-order ODE's.</p>
<p>Ciao!&nbsp;</p>
</html>
👍  , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and 44 others
properties (23)
authordrifter1
permlinkmathematics-ordinary-first-order-differential-equations-part-2
categorymathematics
json_metadata{"tags":["mathematics","steemiteducation","ordinary","differential","equations"],"image":["https://s14.postimg.org/d890sqd7l/part2.jpg"],"links":["http://www.ivyzen.net/wp-content/uploads/2016/09/maths-problems-marilyn-ftr.jpg","https://steemit.com/mathematics/@drifter1/mathematics-differential-equations-introduction","https://steemit.com/mathematics/@drifter1/mathematics-ordinary-first-order-differential-equations-part-1"],"app":"steemit/0.1","format":"html"}
created2018-03-05 10:44:33
last_update2018-03-06 19:14:57
depth0
children1
last_payout2018-03-12 10:44:33
cashout_time1969-12-31 23:59:59
total_payout_value10.856 HBD
curator_payout_value3.182 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length4,243
author_reputation98,202,866,830,354
root_title"Mathematics - Ordinary first-order Differential equations (part 2)"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id42,347,953
net_rshares3,433,808,422,681
author_curate_reward""
vote details (108)
@steemstem-bot ·
$0.59
<center><a href="www.steemit.com/@steemstem"><img src="https://media.discordapp.net/attachments/384404201544876032/405507994583957505/steemSTEM.png"></a><br><table><tr><th> </th><th> </th><th><a href="https://steemit.com/steemstem/@steemstem/helpful-guidelines-for-crafting-steemstem-content">Guidelines</a></th><th><a href="https://steemit.com/steemstem/@steemstem/steemstem-winter-2017-2018-project-update">Project Update</a></th><th> </th><th> </th></tr></table><br><a href="https://steemit.com/steemstem/@steemstem/being-a-member-of-the-steemstem-community"><b>Being A SteemStem Member</b></a></center>
👍  ,
properties (23)
authorsteemstem-bot
permlinkre-mathematics-ordinary-first-order-differential-equations-part-2-20180306t064326
categorymathematics
json_metadata""
created2018-03-06 06:43:27
last_update2018-03-06 06:43:27
depth1
children0
last_payout2018-03-13 06:43:27
cashout_time1969-12-31 23:59:59
total_payout_value0.590 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length606
author_reputation3,811,533,615,496
root_title"Mathematics - Ordinary first-order Differential equations (part 2)"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id42,556,807
net_rshares145,644,119,009
author_curate_reward""
vote details (2)