create account

Physics - Classical Mechanics - Collision Examples by drifter1

View this thread on: hive.blogpeakd.comecency.com
· @drifter1 ·
$4.81
Physics - Classical Mechanics - Collision Examples
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/9/99/Elastic_collision.svg/640px-Elastic_collision.svg.png">
<p>[<a href="https://commons.wikimedia.org/wiki/File:Elastic_collision.svg">Image 1</a>]</p>
<h2>Introduction</h2>
<p>&nbsp;&nbsp;&nbsp;&nbsp;Hey it's a me again <a href="https://steemit.com/@drifter1">@drifter1</a>! Today we continue with <strong>Physics</strong> and more specifically the branch "<strong>Classical Mechanics</strong>" to get into some <strong>Examples of Collisions</strong>. So, without further ado, let's get straight into it!</p>
<hr>
<h2>Elastic Collisions</h2>&nbsp;&nbsp;&nbsp;&nbsp;As we said in the previous article, Elastic Collisions are those where both the Momentum and Kinetic Energy are being conserved. Analysing such a collision mathematically we found some very useful equations that can be used when we are trying to calculate the velocity of each object that took part at the collision after the collision. Based on all that, let's get into some examples now...
<h3>1. An object collides with an object at rest</h3>Based on an example from <a href="https://www.varsitytutors.com/high_school_physics-help/understanding-elastic-and-inelastic-collisions">varsitytutors</a><br><br>
Consider the following situtation:<br>
<img src="https://i.postimg.cc/4NXztbqX/image.png"><br>
&nbsp;&nbsp;&nbsp;&nbsp;Knowing the mass of both objects, the initial and final velocity of the first one, and that the second (heavier) object is at rest first, let's calculate the final velocity of the second object.<br><br>
&nbsp;&nbsp;&nbsp;&nbsp;First of all, it's not a special case like the ones that we described last time, cause here the two objects don't have equal masses and the difference in mass is also not quite large (to talk about a light and heavy object). So, what do we do? With the information that is given to us, we just have to apply the conservation of momentum for the system before and after the collision. That way we have:<br>
<img src="https://quicklatex.com/cache3/22/ql_9f19b5330c9a971ad00f8e52d2b5ab22_l3.png"><br><br>
&nbsp;&nbsp;&nbsp;&nbsp;Knowing that the velocity of object 2 is zero at first, we can eliminate this component from the equation, and afterwards find the final velocity of the second object, by solving the equation for v2' and putting the given values for each quantity:<br>
<img src="https://quicklatex.com/cache3/da/ql_118c0b84a66612b2a800903e328593da_l3.png"><br><br>
We could make even more examples with different given quantities...
<hr>
<h3>2. Two objects of equal mass move in the same direction</h3>
Based on an example from <a href="http://spiff.rit.edu/classes/phys311.old/lectures/elas/elas.html">spiff.rit.edu</a><br><br>
&nbsp;&nbsp;&nbsp;&nbsp;Let's suppose that we have two balls of mass m = 0.2kg that move in the same direction. The ball in front is moving slower than the ball behind it and so the second ball catches up and hits it. If we know that the speed of each of them is v1 = 1 m/s and v2 = 3 m/s, what happens after they hit?<br><br>
&nbsp;&nbsp;&nbsp;&nbsp;You might remember that this is a special case. From that special case we can already say that the two balls will "exchange" speed. So, both of them will still go in the same direction, but now the ball in front will be faster than the ball behind it, moving at v1' = v2 = 3 m/s, while the ball behind will go slower at an velocity of v2' = v1 = 1 m/s. Let's prove these values using the two equations that came out applying both the conservation of momentum and kinetic energy:<br>
<img src="https://steemitimages.com/640x0/https://quicklatex.com/cache3/ad/ql_77bbccc93c563de8e87459d847f5f8ad_l3.png"><br><br>
Having equal masses one part of each equation gets eliminated:<br>
<img src="https://quicklatex.com/cache3/a1/ql_502a460f64fb9416f55626f2e076b6a1_l3.png"><br><br>
So, in the end we end up with:<br>
<img src="https://quicklatex.com/cache3/b3/ql_c1a5a4649240269275b5ba97585aaeb3_l3.png"><br><br>
You can see that they truly exchange velocities!
<hr>
<h3>3. Momentum Conservation of 1.</h3>&nbsp;&nbsp;&nbsp;&nbsp;To understand elastic collisions even better let's get into the first example more in-depth. To do so, let's calculate the momentum values before and after the collision, for each object and the total system, to see how the energy and momentum moves from one object to the other.<br><br>
&nbsp;&nbsp;&nbsp;&nbsp;The initial momentum of the system is equal to the initial momentum of the moving object, whilst the initial momentum of the object at rest is zero. Mathematically we have the following momentum values:<br>
<img src="https://quicklatex.com/cache3/18/ql_9e5516a68a4ad66ad87c98946452f118_l3.png"><br><br>
&nbsp;&nbsp;&nbsp;&nbsp;After the collision some momentum of the moving object is given to the stationary one, keeping the total momentum of the system the same. And so we have:<br>
<img src="https://quicklatex.com/cache3/8e/ql_09df7ea314f6826b9dfeb235c0c8f58e_l3.png">
<hr>
<h2>Inelastic Collision</h2>&nbsp;&nbsp;&nbsp;&nbsp;After those simpler elastic collisions let's now also get into an inelastic collision example!
<h3>A truck "locks" onto a stationary car</h3>
Example from <a href="https://sciencenotes.org/inelastic-collision-example-problem-physics-homework-help/">sciencenotes</a><br><br>
&nbsp;&nbsp;&nbsp;&nbsp;A 3000 kg truck travelling at 50 km/h strikes a stationary 1000 kg car, locking the two vehicles together.<br>
Calculate:<br>
<ol>
<li>The final velocity V of the two vehicles</li>
<li>How much kinetic energy is lost in the collision?</li>
</ol>
<strong>1.</strong><br>&nbsp;&nbsp;&nbsp;&nbsp;Knowing that the two vehicles form a single "object" after the collision (aggregation), we can say that this collision is inelastic. So, we can only apply the conservation of momentum. By applying it we get:<br>
<img src="https://quicklatex.com/cache3/64/ql_dcde013b737620b0536451a094fe4764_l3.png"><br><br>
<strong>2.</strong><br>The initial kinetic energy is:<br>
<img src="https://quicklatex.com/cache3/17/ql_fc331feba33a53d2f5fa5d24aa6b8417_l3.png"><br><br>
The final kinetic energy, after the collision, is:<br>
<img src="https://quicklatex.com/cache3/9f/ql_f477422430438b022127147e73f4ac9f_l3.png"><br><br>
Therefore the loss in kinetic energy is:<br>
<img src="https://quicklatex.com/cache3/30/ql_6332895504a5d303b9d227c39bc69f30_l3.png"><br><br>
As an percentage this can be represented as:<br>
https://quicklatex.com/cache3/69/ql_df3fb1baea973a450c770acbb1163e69_l3.png<br><br>
&nbsp;&nbsp;&nbsp;&nbsp;So, roughly 3/4 of the initial kinetic energy are being conserved, or we can also say that 1/4 of the energy is being lost.
<hr>
<h2>RESOURCES:</h2>
<h3>References</h3>
<ol>
<li>https://www.varsitytutors.com/high_school_physics-help/understanding-elastic-and-inelastic-collisions</li>
<li>http://spiff.rit.edu/classes/phys311.old/lectures/elas/elas.html</li>
<li>https://sciencenotes.org/inelastic-collision-example-problem-physics-homework-help/</li>
</ol>
<h3>Images</h3>
<ol>
<li><a href="https://commons.wikimedia.org/wiki/File:Elastic_collision.svg">https://commons.wikimedia.org/wiki/File:Elastic_collision.svg</a></li>
</ol>
<br>
<p>Mathematical equations used in this article, where made using <a href="http://quicklatex.com/">quicklatex</a>.</p>
<hr>
<h2>Previous articles of the series</h2>
<h3>Rectlinear motion</h3>
<ul>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-velocity-and-acceleration-in-a-rectlinear-motion">Velocity and acceleration in a rectlinear motion</a> -&gt; velocity, accelaration and averages of those</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-rectlinear-motion-with-constant-accelaration-and-free-falling">Rectlinear motion with constant accelaration and free falling</a> -&gt; const accelaration motion and free fall</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-rectlinear-motion-with-variable-acceleration-and-velocity-relativity">Rectlinear motion with variable acceleration and velocity relativity</a> -&gt; integrations to calculate pos and velocity, relative velocity</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-rectlinear-motion-exercises">Rectlinear motion exercises</a> -&gt; examples and tasks in rectlinear motion</li>
</ul>
<h3>Plane motion</h3>
<ul>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-position-velocity-and-acceleration-vectors-in-a-plane-motion">Position, velocity and acceleration vectors in a plane motion</a> -&gt; position, velocity and accelaration in plane motion</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-projectile-motion-as-a-plane-motion">Projectile motion as a plane motion</a> -&gt; missile/bullet motion as a plane motion</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-smooth-circular-motion">Smooth Circular motion</a> -&gt; smooth circular motion theory</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-plane-motion-exercises">Plane motion exercises</a> -&gt; examples and tasks in plane motions</li>
</ul>
<h3>Newton's laws and Applications</h3>
<ul>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-force-and-newton-s-first-law">Force and Newton's first law </a>-&gt; force, 1st law</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-mass-and-newton-s-second-law">Mass and Newton's second law</a> -&gt; mass, 2nd law</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-newton-s-3rd-law-and-mass-vs-weight">Newton's 3rd law and mass vs weight</a> -&gt; mass vs weight, 3rd law, friction</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-applying-newton-s-laws">Applying Newton's Laws</a> -&gt; free-body diagram, point equilibrium and 2nd law applications</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-contact-forces-and-friction">Contact forces and friction</a> -&gt; contact force, friction</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-dynamics-of-circular-motion">Dynamics of Circular motion</a> -&gt; circular motion dynamics, applications</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-object-equilibrium-and-2nd-law-application-examples">Object equilibrium and 2nd law application examples</a> -&gt; examples of object equilibrium and 2nd law applications</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-contact-force-and-friction-examples">Contact force and friction examples</a> -&gt; exercises in force and friction</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-circular-dynamic-and-vertical-circle-motion-examples">Circular dynamic and vertical circle motion examples </a>-&gt; exercises in circular dynamics</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-advanced-newton-law-examples">Advanced Newton law examples</a> -&gt; advanced (more difficult) exercises</li>
</ul>
<h3>Work and Energy</h3>
<ul>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-work-and-kinetic-energy">Work and Kinetic Energy</a> -&gt; Definition of Work, Work by a constant and variable Force, Work and Kinetic Energy, Power, Exercises</li>
  <li><a href="https://steemit.com/busy/@drifter1/physics-classical-mechanics-conservative-and-non-conservative-forces">Conservative and Non-Conservative Forces</a> -&gt; Conservation of Energy, Conservative and Non-Conservative Forces and Fields, Calculations and Exercises</li>
  <li><a href="https://steemit.com/busy/@drifter1/physics-classical-mechanics-potential-and-mechanical-energy">Potential and Mechanical Energy</a> -&gt; Gravitational and Elastic Potential Energy, Conservation of Mechanical Energy, Problem Solving Strategy & Tips</li>
  <li><a href="https://steemit.com/busy/@drifter1/physics-classical-mechanics-force-and-potential-energy">Force and Potential Energy</a> -&gt; Force as Energy Derivative (1-dim) and Gradient (3-dim)</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-potential-energy-diagrams">Potential Energy Diagrams</a> -&gt; Energy Diagram Interpretation, Steps and Example </li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-internal-energy-and-work">Potential Energy Diagrams</a> -&gt;  Internal Energy, Internal Work </li>
</ul>
<h3>Momentum and Impulse</h3>
<ul>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-conservation-of-momentum">Conservation of Momentum</a> -&gt; Momentum, Conservation of Momentum</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-elastic-and-inelastic-collisions">Elastic and Inelastic Collisions</a> -&gt; Collision, Elastic Collision, Inelastic Collision</li>
</ul>
<hr>
<h2>Final words | Next up</h2>
<p>&nbsp;&nbsp;&nbsp;&nbsp;This is actually it for today's post! Next time we will get into Impulse..</p>
<p>See ya!</p>
<p><img src="https://steemitimages.com/DQmecufxEjbsrjrCLHDzeXNUvTXaCoWbVvhWtHmWjURcnuC/red%20atom.gif" width="640" height="280"/></p>
<p><img src="https://steemitimages.com/0x0/https://media.giphy.com/media/ybITzMzIyabIs/giphy.gif" width="500" height="333"/></p>
<p>Keep on drifting!</p>
👍  , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and 347 others
properties (23)
authordrifter1
permlinkphysics-classical-mechanics-collision-examples
categoryphysics
json_metadata{"community":"busy","app":"busy/2.5.6","format":"markdown","tags":["physics","busy","education","science","steemstem"],"users":["drifter1"],"links":["https://commons.wikimedia.org/wiki/File:Elastic_collision.svg","https://steemit.com/@drifter1","https://www.varsitytutors.com/high_school_physics-help/understanding-elastic-and-inelastic-collisions","http://spiff.rit.edu/classes/phys311.old/lectures/elas/elas.html","https://sciencenotes.org/inelastic-collision-example-problem-physics-homework-help/","https://www.varsitytutors.com/high_school_physics-help/understanding-elastic-and-inelastic-collisions","http://spiff.rit.edu/classes/phys311.old/lectures/elas/elas.html","https://sciencenotes.org/inelastic-collision-example-problem-physics-homework-help/","https://commons.wikimedia.org/wiki/File:Elastic_collision.svg","http://quicklatex.com/"],"image":["https://upload.wikimedia.org/wikipedia/commons/thumb/9/99/Elastic_collision.svg/640px-Elastic_collision.svg.png","https://i.postimg.cc/4NXztbqX/image.png","https://quicklatex.com/cache3/22/ql_9f19b5330c9a971ad00f8e52d2b5ab22_l3.png","https://quicklatex.com/cache3/da/ql_118c0b84a66612b2a800903e328593da_l3.png","https://steemitimages.com/640x0/https://quicklatex.com/cache3/ad/ql_77bbccc93c563de8e87459d847f5f8ad_l3.png","https://quicklatex.com/cache3/a1/ql_502a460f64fb9416f55626f2e076b6a1_l3.png","https://quicklatex.com/cache3/b3/ql_c1a5a4649240269275b5ba97585aaeb3_l3.png","https://quicklatex.com/cache3/18/ql_9e5516a68a4ad66ad87c98946452f118_l3.png","https://quicklatex.com/cache3/8e/ql_09df7ea314f6826b9dfeb235c0c8f58e_l3.png","https://quicklatex.com/cache3/64/ql_dcde013b737620b0536451a094fe4764_l3.png","https://quicklatex.com/cache3/17/ql_fc331feba33a53d2f5fa5d24aa6b8417_l3.png","https://quicklatex.com/cache3/9f/ql_f477422430438b022127147e73f4ac9f_l3.png","https://quicklatex.com/cache3/30/ql_6332895504a5d303b9d227c39bc69f30_l3.png","https://quicklatex.com/cache3/69/ql_df3fb1baea973a450c770acbb1163e69_l3.png","https://steemitimages.com/DQmecufxEjbsrjrCLHDzeXNUvTXaCoWbVvhWtHmWjURcnuC/red%20atom.gif","https://steemitimages.com/0x0/https://media.giphy.com/media/ybITzMzIyabIs/giphy.gif"]}
created2019-02-25 14:11:51
last_update2019-02-25 14:11:51
depth0
children2
last_payout2019-03-04 14:11:51
cashout_time1969-12-31 23:59:59
total_payout_value3.690 HBD
curator_payout_value1.118 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length13,582
author_reputation98,202,866,830,354
root_title"Physics - Classical Mechanics - Collision Examples"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id80,373,767
net_rshares8,077,977,305,442
author_curate_reward""
vote details (411)
@steem-ua ·
#### Hi @drifter1!

Your post was upvoted by @steem-ua, new Steem dApp, using UserAuthority for algorithmic post curation!
Your **UA** account score is currently 3.486 which ranks you at **#6689** across all Steem accounts.
Your rank has not changed in the last three days.

In our last Algorithmic Curation Round, consisting of 196 contributions, your post is ranked at **#169**.
##### Evaluation of your UA score:

* You're on the right track, try to gather more followers.
* The readers appreciate your great work!
* Try to work on user engagement: the more people that interact with you via the comments, the higher your UA score!


**Feel free to join our [@steem-ua Discord server](https://discord.gg/KpBNYGz)**
👍  
properties (23)
authorsteem-ua
permlinkre-physics-classical-mechanics-collision-examples-20190226t000429z
categoryphysics
json_metadata"{"app": "beem/0.20.18"}"
created2019-02-26 00:04:30
last_update2019-02-26 00:04:30
depth1
children0
last_payout2019-03-05 00:04:30
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length717
author_reputation23,214,230,978,060
root_title"Physics - Classical Mechanics - Collision Examples"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id80,398,105
net_rshares13,652,262,010
author_curate_reward""
vote details (1)
@steemstem ·
$0.49
re-drifter1-physics-classical-mechanics-collision-examples-20190227t023233005z
<div class='text-justify'> <div class='pull-left'> <br /> <center> <img width='125' src='https://i.postimg.cc/9FwhnG3w/steemstem_curie.png'> </center>  <br/> </div> <br /> <br /> 

 This post has been voted on by the **SteemSTEM** curation team and voting trail in collaboration with **@curie**. <br /> 
 If you appreciate the work we are doing then consider [voting](https://www.steemit.com/~witnesses) both projects for witness by selecting [**stem.witness**](https://steemconnect.com/sign/account_witness_vote?approve=1&witness=stem.witness) and [**curie**](https://steemconnect.com/sign/account_witness_vote?approve=1&witness=curie)! <br /> 
For additional information please join us on the [**SteemSTEM discord**]( https://discord.gg/BPARaqn) and to get to know the rest of the community! </div>
👍  , , , , ,
properties (23)
authorsteemstem
permlinkre-drifter1-physics-classical-mechanics-collision-examples-20190227t023233005z
categoryphysics
json_metadata{"app":"bloguable-bot"}
created2019-02-27 02:32:36
last_update2019-02-27 02:32:36
depth1
children0
last_payout2019-03-06 02:32:36
cashout_time1969-12-31 23:59:59
total_payout_value0.365 HBD
curator_payout_value0.121 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length800
author_reputation262,017,435,115,313
root_title"Physics - Classical Mechanics - Collision Examples"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id80,469,327
net_rshares814,192,396,528
author_curate_reward""
vote details (6)