create account

Physics - Classical Mechanics - Kepler's Laws of Planetary Motion by drifter1

View this thread on: hive.blogpeakd.comecency.com
· @drifter1 ·
$33.69
Physics - Classical Mechanics - Kepler's Laws of Planetary Motion
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Kepler-first-law.svg/640px-Kepler-first-law.svg.png">
<p>[<a href="https://commons.wikimedia.org/wiki/File:Kepler-first-law.svg">Image1</a>]</p>
<h2>Introduction</h2>
<p>
Hey it's a me again <a href="https://peakd.com/@drifter1">@drifter1</a>!<br><br>
In this article we will continue with <strong>Physics</strong>, and more specifically the branch of "<strong>Classical Mechanics</strong>".
Today's topic are <strong>Kepler's Laws of Planetary Motion</strong>, extending the articles around the topic of <strong>Gravity</strong> even more into space!<br><br>
So, without further ado, let's get straight into it!
</p>
<hr>
<h2>How Kepler's Laws came to be</h2>
<h3>The Story of Kepler</h3>
<p>
German mathematician <strong>Johannes Kepler</strong> lived in Graz, Austria during the early 17th century.
Do to religuous and political difficulties of the era he was banished from Graz.
Due to the more accurate astronomical observations of his time, famous astronomer <strong>Tycho Brache</strong> was impressed by young Kepler.
Thus, young Kepler moved from Graz to Brahe's home in Praque to work as an assistant of Brahe.
Because Brahe mistrusted Kepler, he didn't show all his volunimous planetary data, fearing that young Kepler might surpass him. [Ref1]
</p>
<p>
The orbit of planet Mars didn't fit into the universal model set by Aristotle and Ptolemy, and so Brahe set Kepler the <strong>task of understanding the orbit of Mars</strong>.
Brahe hoped that the difficulty of this task would occupy Kepler while he could work on perfecting his own theory of the solar system, where the earth was considered the center of the solar system.
Based on this geocentric model, all other planets orbit around the Sun, while the Sun orbits around the earth.
Kepler beliveved into the <strong>Copernican model</strong> of the solar system, known as heliocentric, which correctly placed the Sun at its center.
The problem with the Copernican system was that it incorrectly assumed that the orbits of the planets are circular. [Ref1]
</p>
<p>
After a lot of struggling, Kepler finally realized that <strong>the orbits of the planets are not circles</strong>, but elongated or flattened circles, called ellipses.
The orbit of planet mars was the most elliptical among the planets for which Brahe had extensive data.
In a twist, Brahe unwittingly gave Kepler the very part of his data that would enable Kepler to formulate the correct theory for the solar system, banishing Brahe's own theory. [Ref1]
</p>
<h3>Elliptical Orbit</h3>
<p>
Since the orbits of the planets are ellipses, each orbit has three basic <strong>properties</strong>:
<ul>
  <li>An ellipse is defined by two points, called <strong>focus</strong>, which together are called foci.
    <ul>
      <li>The sum of the distances to the foci from any point on the ellipse is always constant (similar to how the distance to the center of a circle is always constant and equal to its radius)</li>
    </ul>
  </li>
  <li>An ellipse is described by its <strong>eccentricity</strong> (amount of flatting)
    <ul>
      <li>The flatter an ellpse the more eccentric it is</li>
      <li>The eccentricity is a value between zero (a circle) and one (a flat line called parabola)</li>
    </ul>
  </li>
  <li>An ellipse has two <strong>axes</strong>:
    <ul>
      <li>the longest axis is called major axis</li>
      <li>the shortest axis is called minor axis</li>
      <li>the half of the major axis is termed a semi major axis</li>
    </ul>
  </li>
</ul>
</p>
<p>
Using such elliptical orbits, the motion of the planets, and comets as well, can be described very accurately.
The orbit of each planet is thus defined by the foci, eccentricity and two axes.
</p>
<h3>Kepler's Laws</h3>
<p>
Kepler's Laws describe how the planets orbit around the Sun, and more specifically:
<ul>
  <li>How planets move in elliptical orbits with the Sun at one focus (First Law)</li>
  <li>How a planet covers the same area of space in the same amount of time, no matter where it is in its orbit (Second Law)</li>
  <li>How the orbital period of a planet is proportional to the size of its orbit (Third Law)</li>
</ul>
</p>
<hr>
<h2>Kepler's First Law (The Law of Ellipses)</h2>
<p>
Each planet's orbit about the Sun is an ellipse, with the Sun's center always located at one focus of the orbital ellipse.
The planet follows the ellipse, making the distance the planet has to the Sun change constantly.
</p>
<p>
An ellipse can be described in many ways, but all are more general equation for conic sections.
</p>
<p>
Mathematically, in polar coordinates (r, θ), an <strong>ellipse</strong> can be represented by the formula:<br><br>
<img src="https://quicklatex.com/cache3/4b/ql_7fd6f1a8f9223eaf602803cc1d380c4b_l3.png">
<ul>
  <li><em>r</em>: distance from the Sun to the planet</li>
  <li><em>p</em>: semi-latus rectum of the conic section, which is half of the chord parallel to the directix passing though a focus</li>
  <li><em>ε</em>: eccentricity of the ellipse</li>
  <li><em>θ</em>: the angle of the planet's current position from its closest approach (perihelion)</li>
</ul>
</p>
<p>
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/3/39/Ellipse_latus_rectum.PNG/483px-Ellipse_latus_rectum.PNG"><br><br>
[<a href="https://commons.wikimedia.org/wiki/File:Ellipse_latus_rectum.PNG">Image 2</a>]
</p>
<p>
At <em>θ = 0°</em>, <strong>perihelion</strong>, the distance is minimum:<br><br>
<img src="https://quicklatex.com/cache3/bf/ql_7e6c0a9a731405b36d22102a494b29bf_l3.png">
</p>
<p>
At <em>θ = 180°</em>, <strong>aphelion</strong>, the distance is maximum:<br><br>
<img src="https://quicklatex.com/cache3/32/ql_c8aaf72c617ebc9ed5911029df362632_l3.png">
</p>
<p>
At <em>θ = 90°</em> and <em>θ = 270°</em> the distance equals <em>p</em>.
</p>
<p>
The <strong>semi-major axis</strong> <em>a</em> of the ellipse, is the arithmetic mean between <em>r<sub>min</sub></em> and <em>r<sub>max</sub></em>:<br><br>
<img src="https://quicklatex.com/cache3/08/ql_f422507afece87d42e2b7344ab343208_l3.png">
</p>
<p>
The <strong>semi-minor axis</strong> <em>b</em> of the ellipse, is the geometric mean between <em>r<sub>min</sub></em> and <em>r<sub>max</sub></em>:<br><br>
<img src="https://quicklatex.com/cache3/5a/ql_ebd49c15779e2128912d6f1fe0a66a5a_l3.png">
</p>
<p>
The <strong>semi-latus rectum</strong> <em>p</em> is the harmonic mean between <em>r<sub>min</sub></em> and <em>r<sub>max</sub></em>:<br><br>
<img src="https://quicklatex.com/cache3/82/ql_dabfcc0cf6406ae41ca15a68c2a52f82_l3.png">
</p>
<p>
The <strong>eccentricity</strong> <em>ε</em> is the coefficinent of variation between <em>r<sub>min</sub></em> and <em>r<sub>max</sub></em>:<br><br>
<img src="https://quicklatex.com/cache3/b3/ql_6e5fcc794b0cdc3308083a103837b9b3_l3.png">
</p>
<p>
The <strong>area</strong> <em>A</em> of an ellipse is given by:<br><br>
<img src="https://quicklatex.com/cache3/20/ql_bfae5362b46e402bb248500aa3abf520_l3.png"><br><br>
For the special case of a circle, <em>ε = 0</em>, <em>r = p = r<sub>min</sub> = r<sub>max</sub> = a = b</em> giving <em>A = πr<sup>2</sup></em>
</p>
<h3>Eccentricity of the Solar System's planets</h3>
<p>
<ul>
<li>Mercury -  <em>ε = 0.206</em></li>
<li>Venus - <em>ε = 0.0068</em></li>
<li>Earth - <em>ε = 0.0167</em></li>
<li>Mars - <em>ε = 0.0934</em></li>
<li>Jupiter - <em>ε = 0.0485</em></li>
<li>Saturn - <em>ε = 0.0556</em></li>
<li>Uranus - <em>ε = 0.0472</em></li>
<li>Neptune - <em>ε = 0.0086</em></li>
</ul>
The ellipses of all but Mercury and Mars are basically circles.
</p>
<hr>
<h2>Kepler's Second Law (The Law of Equal Areas)</h2>
<p>
Drawing an imaginary line from the center of the sun to the center of the planet will sweep out equal areas in equal intervals of time.
In other words, the planets do not move in constant speed along their orbits, but the speed various based on the distance to the sun.
The closer the planet is to the sun the faster it moves, the further away the slower it moves.
The nearest approach is termed perihelion, whilst the greatest sepeartion a aphelion.
</p>
<p>
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/2/27/Second_law_of_Kepler.svg/594px-Second_law_of_Kepler.svg.png"><br><br>
[<a href="https://commons.wikimedia.org/wiki/File:Second_law_of_Kepler.svg">Image 3</a>]
</p>
<p>
The orbital radius and angular velocity of the planet vary during its elliptical orbit.
</p>
<p>
During infinitesimal time <em>dt</em>, the planet sweeps out a small triangle with base line <em>r</em> and height <em>r dθ</em>, with area:<br><br>
<img src="https://quicklatex.com/cache3/c1/ql_d81a9efb02bb59bc562b982694f2d9c1_l3.png"><br><br>
and so a planet has the following <strong>constant areal velocity</strong>:<br><br>
<img src="https://quicklatex.com/cache3/7b/ql_99097e3a7611cff10659288288c84c7b_l3.png">
</p>
<hr>
<h2>Kepler's Third Law (The Law of Harmonies)</h2>
<p>
The period of a planet's orbit increases rapidly with the radius of its orbit. More specifically the law states that:
<pre>The squares of the orbital periods of the planets are directly proportional
to the cubes of the semi major axes of their orbits</pre>
</p>
<p>
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/6/6c/Third_law_of_Kepler.svg/800px-Third_law_of_Kepler.svg.png"><br><br>
[<a href="https://commons.wikimedia.org/wiki/File:Third_law_of_Kepler.svg">Image 4</a>]
</p>
<p>
Combining Kepler's Third Law with Newton's Law of Gravitation, the following equation comes out:<br><br>
<img src="https://quicklatex.com/cache3/c6/ql_8614276fdc12354590079be52c2cfec6_l3.png">
</p>
<p>
Using this law its easier to compare the orbits of the various planets with each other.
For example in the case of the Earth and Mars:
<ul>
<li>Earth: <em>Period = 3.156 x 10 <sup>7</sup> secs</em>, <em>Average Distance = 1.4957 x 10<sup>11</sup> m </em> and <em>T<sup>2</sup>/a<sup>3</sup> = 2.977 x 10<sup>-19</sup> s<sup>2</sup>/m<sup>3</sup></em></li>
<li>Mars: <em>Period = 5.930 x 10 <sup>7</sup> secs</em>, <em>Average Distance = 2.2780 x 10<sup>11</sup> m </em> and <em>T<sup>2</sup>/a<sup>3</sup> = 2.975 x 10<sup>-19</sup> s<sup>2</sup>/m<sup>3</sup></em></li>
</ul>
A similar ratio can also be computed for the other planets.
</p>
<hr>
<h2>RESOURCES:</h2>
<h3>References</h3>
<ol>
<li><a href="https://solarsystem.nasa.gov/resources/310/orbits-and-keplers-laws/">https://solarsystem.nasa.gov/resources/310/orbits-and-keplers-laws/</a></li>
<li><a href="https://www.physicsclassroom.com/class/circles/Lesson-4/Kepler-s-Three-Laws">https://www.physicsclassroom.com/class/circles/Lesson-4/Kepler-s-Three-Laws</a></li>
<li><a href="https://cnx.org/contents/8sj3SsYT@12/Kepler-s-Laws-of-Planetary-Motion">https://cnx.org/contents/8sj3SsYT@12/Kepler-s-Laws-of-Planetary-Motion</a></li>
<li><a href="http://hyperphysics.phy-astr.gsu.edu/hbase/kepler.html">http://hyperphysics.phy-astr.gsu.edu/hbase/kepler.html</a></li>
<li><a href="https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion">https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion</a></li>
</ol>
<h3>Images</h3>
<ol>
<li><a href="https://commons.wikimedia.org/wiki/File:Kepler-first-law.svg">https://commons.wikimedia.org/wiki/File:Kepler-first-law.svg</a></li>
<li><a href="https://commons.wikimedia.org/wiki/File:Ellipse_latus_rectum.PNG">https://commons.wikimedia.org/wiki/File:Ellipse_latus_rectum.PNG</a></li>
<li><a href="https://commons.wikimedia.org/wiki/File:Second_law_of_Kepler.svg">https://commons.wikimedia.org/wiki/File:Second_law_of_Kepler.svg</a></li>
<li><a href="https://commons.wikimedia.org/wiki/File:Third_law_of_Kepler.svg">https://commons.wikimedia.org/wiki/File:Third_law_of_Kepler.svg</a></li>
</ol>
<p>Mathematical equations used in this article, where made using <a href="http://quicklatex.com/">quicklatex</a>.</p>
<hr>
<h2>Previous articles of the series</h2>
<h3>Rectlinear motion</h3>
<ul>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-velocity-and-acceleration-in-a-rectlinear-motion">Velocity and acceleration in a rectlinear motion</a> -&gt; velocity, acceleration and averages of those</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-rectlinear-motion-with-constant-accelaration-and-free-falling">Rectlinear motion with constant acceleration and free falling</a> -&gt; const acceleration motion and free fall</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-rectlinear-motion-with-variable-acceleration-and-velocity-relativity">Rectlinear motion with variable acceleration and velocity relativity</a> -&gt; integrations to calculate pos and velocity, relative velocity</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-rectlinear-motion-exercises">Rectlinear motion exercises</a> -&gt; examples and tasks in rectlinear motion</li>
</ul>
<h3>Plane motion</h3>
<ul>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-position-velocity-and-acceleration-vectors-in-a-plane-motion">Position, velocity and acceleration vectors in a plane motion</a> -&gt; position, velocity and acceleration in plane motion</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-projectile-motion-as-a-plane-motion">Projectile motion as a plane motion</a> -&gt; missile/bullet motion as a plane motion</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-smooth-circular-motion">Smooth Circular motion</a> -&gt; smooth circular motion theory</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-plane-motion-exercises">Plane motion exercises</a> -&gt; examples and tasks in plane motions</li>
</ul>
<h3>Newton's laws and Applications</h3>
<ul>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-force-and-newton-s-first-law">Force and Newton's first law </a>-&gt; force, 1st law</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-mass-and-newton-s-second-law">Mass and Newton's second law</a> -&gt; mass, 2nd law</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-newton-s-3rd-law-and-mass-vs-weight">Newton's 3rd law and mass vs weight</a> -&gt; mass vs weight, 3rd law, friction</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-applying-newton-s-laws">Applying Newton's Laws</a> -&gt; free-body diagram, point equilibrium and 2nd law applications</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-contact-forces-and-friction">Contact forces and friction</a> -&gt; contact force, friction</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-dynamics-of-circular-motion">Dynamics of Circular motion</a> -&gt; circular motion dynamics, applications</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-object-equilibrium-and-2nd-law-application-examples">Object equilibrium and 2nd law application examples</a> -&gt; examples of object equilibrium and 2nd law applications</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-contact-force-and-friction-examples">Contact force and friction examples</a> -&gt; exercises in force and friction</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-circular-dynamic-and-vertical-circle-motion-examples">Circular dynamic and vertical circle motion examples </a>-&gt; exercises in circular dynamics</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-advanced-newton-law-examples">Advanced Newton law examples</a> -&gt; advanced (more difficult) exercises</li>
</ul>
<h3>Work and Energy</h3>
<ul>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-work-and-kinetic-energy">Work and Kinetic Energy</a> -&gt; Definition of Work, Work by a constant and variable Force, Work and Kinetic Energy, Power, Exercises</li>
  <li><a href="https://steemit.com/busy/@drifter1/physics-classical-mechanics-conservative-and-non-conservative-forces">Conservative and Non-Conservative Forces</a> -&gt; Conservation of Energy, Conservative and Non-Conservative Forces and Fields, Calculations and Exercises</li>
  <li><a href="https://steemit.com/busy/@drifter1/physics-classical-mechanics-potential-and-mechanical-energy">Potential and Mechanical Energy</a> -&gt; Gravitational and Elastic Potential Energy, Conservation of Mechanical Energy, Problem Solving Strategy & Tips</li>
  <li><a href="https://steemit.com/busy/@drifter1/physics-classical-mechanics-force-and-potential-energy">Force and Potential Energy</a> -&gt; Force as Energy Derivative (1-dim) and Gradient (3-dim)</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-potential-energy-diagrams">Potential Energy Diagrams</a> -&gt; Energy Diagram Interpretation, Steps and Example </li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-internal-energy-and-work">Internal Energy and Work</a> -&gt;  Internal Energy, Internal Work</li>
</ul>
<h3>Momentum and Impulse</h3>
<ul>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-conservation-of-momentum">Conservation of Momentum</a> -&gt; Momentum, Conservation of Momentum</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-elastic-and-inelastic-collisions">Elastic and Inelastic Collisions</a> -&gt; Collision, Elastic Collision, Inelastic Collision</li>
  <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-collision-examples">Collision Examples</a> -&gt; Various Elastic and Inelastic Collision Examples</li>
 <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-impulse">Impulse</a> -&gt; Impulse with Example</li>
 <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-motion-of-the-center-of-mass">Motion of the Center of Mass</a> -&gt; Center of Mass, Motion analysis with examples</li>
 <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-explaining-the-physics-behind-rocket-propulsion">Explaining the Physics behind Rocket Propulsion</a> -&gt; Required Background, Rocket Propulsion Analysis </li>
</ul>
<h3>Angular Motion</h3>
<ul>
 <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-angular-motion-basics">Angular motion basics</a> -&gt; Angular position, velocity and acceleration </li>
 <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-rotation-with-constant-angular-acceleration">Rotation with constant angular acceleration</a> -&gt; Constant angular acceleration, Example</li>
 <li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-rotational-kinetic-energy-and-moment-of-inertia">Rotational Kinetic Energy & Moment of Inertia </a> -&gt; Rotational kinetic energy, Moment of Inertia</li>
<li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-parallel-axis-theorem">Parallel Axis Theorem</a> -> Parallel axis theorem with example</li>
<li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-torque-and-angular-acceleration">Torque and Angular Acceleration</a> -> Torque, Relation to Angular Acceleration, Example</li>
<li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-rotation-about-a-moving-axis-rolling-motion">Rotation about a moving axis (Rolling motion)</a> -> Fixed and moving axis rotation</li>
<li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-work-and-power-in-angular-motion">Work and Power in Angular Motion</a> -> Work, Work-Energy Theorem, Power</li>
<li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-angular-momentum">Angular Momentum</a> -> Angular Momentum and its conservation</li>
<li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-explaining-the-physics-behind-mechanical-gyroscopes">Explaining the Physics behind Mechanical Gyroscopes</a> -> What they are, History, How they work (Precession, Mathematical Analysis) Difference to Accelerometers</li>
<li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-exercises-around-angular-motion">Exercises around Angular motion</a> -> Angular motion examples</li>
</ul>
<h3>Equilibrium and Elasticity</h3>
<ul>
<li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-rigid-body-equilibrium">Rigid Body Equilibrium</a> -> Equilibrium Conditions of Rigid Bodies, Center of Gravity, Solving Equilibrium Problems</li>
<li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-force-couple-system">Force Couple System</a> -> Force Couple System, Example</li>
<li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-tensile-stress-and-strain">Tensile Stress and Strain</a> -> Tensile Stress, Tensile Strain, Young's Modulus, Poisson's Ratio</li>
<li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-volumetric-stress-and-strain">Volumetric Stress and Strain</a> -> Volumetric Stress, Volumetric Strain, Bulk's Modulus of Elasticity, Compressibility</li>
<li><a href="https://steemit.com/physics/@drifter1/physics-classical-mechanics-cross-sectional-stress-and-strain">Cross-Sectional Stress and Strain</a> -> Shear Stress, Shear Strain, Shear Modulus</li>
<li><a href="https://peakd.com/steemstem/@drifter1/physics-classical-mechanics-elasticity-and-plasticity-of-common-materials">Elasticity and Plasticity of Common Materials</a> -> Elasticity, Plasticity, Stress-Strain Diagram, Fracture, Common Materials</li>
<li><a href="https://peakd.com/hive-196387/@drifter1/physics-classical-mechanics-rigid-body-equilibrium-exercises">Rigid Body Equilibrium Exercises</a> -> Center of Gravity Calculation, Equilibrium Problems</li>
<li><a href="https://peakd.com/hive-196387/@drifter1/physics-classical-mechanics-exercises-on-elasticity-and-plasticity">Exercises on Elasticity and Plasticity</a> -> Young Modulus, Bulk Modulus and Shear Modulus Examples </li>
</ul>
<h3>Gravity</h3>
<ul>
<li><a href="https://peakd.com/hive-196387/@drifter1/physics-classical-mechanics-newton-s-law-of-gravitation">Newton's Law of Gravitation</a> -> Newton's Law of Gravity, Gravitational Constant G</li>
<li><a href="https://peakd.com/hive-163521/@drifter1/physics-classical-mechanics-weight-the-force-of-gravity">Weight: The Force of Gravity</a> -> Weight, Gravitational Acceleration, Gravity on Earth and Planets of the Solar System</li>
<li><a href="https://peakd.com/hive-196387/@drifter1/physics-classical-mechanics-gravitational-fields">Gravitational Fields</a> -> Gravitational Field Mathematics and Visualization</li>
<li><a href="https://peakd.com/hive-196387/@drifter1/physics-classical-mechanics-gravitational-potential-energy">Gravitational Potential Energy</a> -> Gravitational Potential Energy, Potential and Escape Velocity</li>
<li><a href="https://peakd.com/hive-196387/@drifter1/physics-classical-mechanics-exercises-around-newtonian-gravity-part-1">Exercises around Newtonian Gravity (part 1)</a> -> Examples on the Universal Law of Gravitation</li>
<li><a href="https://peakd.com/hive-196387/@drifter1/physics-classical-mechanics-exercises-around-newtonian-gravity-part-2">Exercises around Newtonian Gravity (part2)</a> -> Examples on Gravitational Fields and Potential Energy</li>
<li><a href="https://peakd.com/hive-196387/@drifter1/physics-classical-mechanics-explaining-the-physics-behind-satellite-motion">Explaining the Physics behind Satellite Motion</a> -> The Circular Motion of Satellites</li>
</ul>
<hr>
<h2>Final words | Next up</h2>
<p>
And this is actually it for today's post!<br><br>
Next time we will get into Kepler's Laws of Planetary Motion...<br><br>
See ya!
</p>
<p><img src="https://media.giphy.com/media/ybITzMzIyabIs/giphy.gif" width="500" height="333"/></p>
Keep on drifting!
👍  , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and 62 others
properties (23)
authordrifter1
permlinkphysics-classical-mechanics-kepler-s-laws-of-planetary-motion
categoryhive-196387
json_metadata"{"app":"peakd/2020.11.2","format":"markdown","description":"How circular turned into elliptical orbits...and Kepler's Laws","tags":["physics","mechanics","education","science","math","gravity","orbit","kepler","planetary-motion","ellipses"],"users":["drifter1"],"links":["https://commons.wikimedia.org/wiki/File:Kepler-first-law.svg","/@drifter1","https://commons.wikimedia.org/wiki/File:Ellipse_latus_rectum.PNG","https://commons.wikimedia.org/wiki/File:Second_law_of_Kepler.svg","https://commons.wikimedia.org/wiki/File:Third_law_of_Kepler.svg","https://solarsystem.nasa.gov/resources/310/orbits-and-keplers-laws/","https://www.physicsclassroom.com/class/circles/Lesson-4/Kepler-s-Three-Laws","https://cnx.org/contents/8sj3SsYT@12/Kepler-s-Laws-of-Planetary-Motion","http://hyperphysics.phy-astr.gsu.edu/hbase/kepler.html","https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion"],"image":["https://upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Kepler-first-law.svg/640px-Kepler-first-law.svg.png","https://quicklatex.com/cache3/4b/ql_7fd6f1a8f9223eaf602803cc1d380c4b_l3.png","https://upload.wikimedia.org/wikipedia/commons/thumb/3/39/Ellipse_latus_rectum.PNG/483px-Ellipse_latus_rectum.PNG","https://quicklatex.com/cache3/bf/ql_7e6c0a9a731405b36d22102a494b29bf_l3.png","https://quicklatex.com/cache3/32/ql_c8aaf72c617ebc9ed5911029df362632_l3.png","https://quicklatex.com/cache3/08/ql_f422507afece87d42e2b7344ab343208_l3.png","https://quicklatex.com/cache3/5a/ql_ebd49c15779e2128912d6f1fe0a66a5a_l3.png","https://quicklatex.com/cache3/82/ql_dabfcc0cf6406ae41ca15a68c2a52f82_l3.png","https://quicklatex.com/cache3/b3/ql_6e5fcc794b0cdc3308083a103837b9b3_l3.png","https://quicklatex.com/cache3/20/ql_bfae5362b46e402bb248500aa3abf520_l3.png","https://upload.wikimedia.org/wikipedia/commons/thumb/2/27/Second_law_of_Kepler.svg/594px-Second_law_of_Kepler.svg.png","https://quicklatex.com/cache3/c1/ql_d81a9efb02bb59bc562b982694f2d9c1_l3.png","https://quicklatex.com/cache3/7b/ql_99097e3a7611cff10659288288c84c7b_l3.png","https://upload.wikimedia.org/wikipedia/commons/thumb/6/6c/Third_law_of_Kepler.svg/800px-Third_law_of_Kepler.svg.png","https://quicklatex.com/cache3/c6/ql_8614276fdc12354590079be52c2cfec6_l3.png","https://media.giphy.com/media/ybITzMzIyabIs/giphy.gif"]}"
created2020-11-27 11:15:57
last_update2020-11-27 11:15:57
depth0
children1
last_payout2020-12-04 11:15:57
cashout_time1969-12-31 23:59:59
total_payout_value16.854 HBD
curator_payout_value16.835 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length24,202
author_reputation98,202,866,830,354
root_title"Physics - Classical Mechanics - Kepler's Laws of Planetary Motion"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id100,706,336
net_rshares131,760,835,576,435
author_curate_reward""
vote details (126)
@hivebuzz ·
Congratulations @drifter1! You have completed the following achievement on the Hive blockchain and have been rewarded with new badge(s) :

<table><tr><td><img src="https://images.hive.blog/60x70/http://hivebuzz.me/@drifter1/replies.png?202011272048"></td><td>You got more than 900 replies. Your next target is to reach 1000 replies.</td></tr>
</table>

<sub>_You can view your badges on [your board](https://hivebuzz.me/@drifter1) and compare yourself to others in the [Ranking](https://hivebuzz.me/ranking)_</sub>
<sub>_If you no longer want to receive notifications, reply to this comment with the word_ `STOP`</sub>

properties (22)
authorhivebuzz
permlinkhivebuzz-notify-drifter1-20201127t210435000z
categoryhive-196387
json_metadata{"image":["http://hivebuzz.me/notify.t6.png"]}
created2020-11-27 21:04:36
last_update2020-11-27 21:04:36
depth1
children0
last_payout2020-12-04 21:04:36
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length620
author_reputation369,385,430,327,553
root_title"Physics - Classical Mechanics - Kepler's Laws of Planetary Motion"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id100,712,940
net_rshares0