#### Repository https://github.com/scikit-learn/scikit-learn #### What Will I Learn? - Collect data from [beem](https://github.com/holgern/beem) and [SteemSQL](https://steemsql.com/) - 3D visualization of features - Use different classifiers - Compare classifiers accuracy #### Requirements - python - basic concepts of data analysis / machine learning Tools: - [python 3](https://www.python.org/) - [pandas](https://pandas.pydata.org/) - [matplotlib](https://matplotlib.org/) - [ipympl](https://github.com/matplotlib/jupyter-matplotlib) - [mplot3d](https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html) - [seaborn](https://seaborn.pydata.org/) - [jupyter notebook](http://jupyter.org/) - [scikit-learn](http://scikit-learn.org/stable/) It looks like a lot of libraries, but it's a standard python toolset for data analysis / machine learning. <center></center> #### Difficulty - Intermediate #### Tutorial Contents - Problem description - Collecting data - 3D visualization of features - Overview and comparison of available classifiers #### Problem description The purpose of this tutorial is to build the account classifier (content creator vs scammer vs comment spammer vs bid-bot). In the previous part of this tutorial, we achieved an accuracy of 95%. And this is what the confusion matrix looks like: <center>  </center> The accuracy is quite good, but we will also check other available machine learning models. In one of the next parts of this series we will go on **to build an API that will allow any Steem user to use this classifier**. #### Collecting data The data was downloaded in a similar way to the previous part of the tutorial. Currently, each class has 769 records. The script that retrieves all the data can be found [here](https://github.com/jwladzinski/MachineLearningForSteem/blob/master/4/read_data.ipynb). The data looks as follows: ``` name followers followings follow ratio muters reputation effective sp own sp sp ratio curation_rewards posting_rewards witnesses_voted_for posts average_post_len comments average_comment_len comments_with_link_ratio posts_to_comments_ratio class 0 anthowarlike 212 34 0.160377 0 56.409193 1.349465e+02 134.946458 1.000000 0.654 265.146 0 0 0 0 0 0.000000 0.000000 0 1 gokcehan61 4117 16596 4.031091 19 51.233260 1.840426e+00 6.897189 0.266837 0.378 143.148 3 0 0 0 0 0.000000 0.000000 0 2 mimikombat 773 701 0.906856 2 60.575495 1.503410e+02 388.205087 0.387272 4.340 762.985 0 125 3366 401 50 0.084788 0.311721 0 3 stixxzyy 238 4 0.016807 0 55.103692 8.356541e+01 83.565407 1.000000 0.000 166.170 0 80 280 0 0 0.000000 0.000000 0 4 akintunde 2171 589 0.271304 9 62.343843 3.119804e+02 448.934538 0.694935 11.737 1025.171 19 21 1941 26 241 0.115385 0.807692 0 5 bryangav 718 80 0.111421 0 55.217102 2.791844e+02 77.046693 3.623574 3.779 183.609 8 62 3023 37 263 0.783784 1.675676 0 6 plouton 50 9 0.180000 0 44.422357 1.500954e+01 6.313641 2.377320 0.011 11.527 0 0 0 0 0 0.000000 0.000000 0 7 marzukie 1546 2585 1.672057 6 54.130093 9.463211e+01 94.632106 1.000000 2.988 146.743 30 77 2597 361 90 0.019391 0.213296 0 8 lisnabuah 25 2 0.080000 0 42.741003 1.190729e+01 0.269269 44.220849 0.002 5.931 0 0 0 0 0 0.000000 0.000000 0 9 nappingkid 255 15 0.058824 1 56.969551 1.773283e+02 177.328282 1.000000 1.110 274.575 0 103 290 8 45 0.000000 12.875000 0 10 itsmskali 118 24 0.203390 0 41.774677 5.015003e+00 3.569537 1.404945 0.022 4.982 0 0 0 0 0 0.000000 0.000000 0 11 rahmato 341 99 0.290323 0 34.397586 1.502713e+01 1.288114 11.665988 0.008 0.686 0 23 875 9 27 0.000000 2.555556 0 12 theuniqornaments 305 14 0.045902 0 45.984113 1.863325e+00 0.046184 40.345844 0.054 12.777 1 39 369 2 19 0.000000 19.500000 0 13 alexcarlos 232 25 0.107759 0 52.324648 4.336502e+01 43.365019 1.000000 0.064 83.009 0 50 1182 2 39 0.000000 25.000000 0 14 sharkhssn90 281 115 0.409253 0 26.253763 1.509236e+01 6.586708 2.291336 0.000 0.090 0 18 1106 25 121 0.000000 0.720000 0 15 omur61 976 1502 1.538934 1 56.939854 4.821556e+01 48.215558 1.000000 7.902 239.101 1 2 123 1 32 0.000000 2.000000 0 16 philberlin 141 50 0.354610 0 31.309064 1.500171e+01 3.211032 4.671927 0.007 0.305 0 0 0 0 0 0.000000 0.000000 0 17 chigz14 342 164 0.479532 2 56.755740 4.491221e+01 165.039345 0.272130 0.167 268.042 4 88 778 28 93 0.214286 3.142857 0 18 elysiian 1969 43 0.021838 7 60.425031 1.800332e+04 17074.531635 1.054396 291.260 1078.414 6 68 57 0 0 0.000000 0.000000 0 19 skizoweza 307 5 0.016287 53 59.502481 3.943580e+02 394.357979 1.000000 5.600 526.632 0 0 0 0 0 0.000000 0.000000 0 20 coretan 908 76 0.083700 4 61.023030 2.803443e+02 481.469079 0.582268 13.339 767.718 0 28 2257 49 83 0.040816 0.571429 0 21 tonygreene113 1329 265 0.199398 8 49.221399 2.278498e+02 227.849765 1.000000 4.193 77.221 7 48 911 570 128 0.629825 0.084211 0 22 tenpoundsterling 293 41 0.139932 0 51.745826 4.027079e+01 40.270792 1.000000 0.042 64.298 3 25 962 167 124 0.053892 0.149701 0 23 copypast3r 19 1 0.052632 0 25.000000 5.021256e+00 0.509150 9.862030 0.000 0.000 0 0 0 0 0 0.000000 0.000000 0 24 eae 859 428 0.498254 0 57.780078 1.530711e+02 153.071146 1.000000 1.217 327.817 0 107 1276 12 66 0.000000 8.916667 0 25 papyboys 330 99 0.300000 1 56.442663 2.003855e+01 120.254800 0.166634 0.046 239.335 1 116 1273 0 0 0.000000 0.000000 0 26 troonatnoor 409 144 0.352078 7 47.927954 4.434722e+01 44.347223 1.000000 0.000 18.675 0 16 3757 2 289 0.500000 8.000000 0 27 nowonline 544 324 0.595588 0 52.441200 1.474777e+02 147.477713 1.000000 0.679 75.321 0 24 6303 211 178 0.066351 0.113744 0 28 skizoweza 307 5 0.016287 53 59.502481 3.943580e+02 394.357979 1.000000 5.600 526.632 0 0 0 0 0 0.000000 0.000000 0 29 susanli3769 1321 288 0.218017 3 66.699240 5.969675e+03 3778.127511 1.580062 138.835 4059.769 9 93 2200 167 51 0.005988 0.556886 0 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ``` #### 3D visualization of features In the previous parts of this tutorial we have done 2D visualization, but equally well, we can do 3D visualization. We will use the [mplot3d](https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html) library and the code below. ``` # create 3D scatter plot # x, y, z - names of features def scatter_plot_3d(d, x, y, z): fig = plt.figure(figsize=(10, 10)) # create 3D axes ax = Axes3D(fig) # plot points, cmap is colormap ax.scatter(d[x], d[y], d[z], c=d['class'], cmap=plt.cm.Accent, edgecolor='k', s=80) # set labels of each axis ax.set_xlabel(x) ax.set_ylabel(y) ax.set_zlabel(z) # add legend to plot # color of each legend label coresponds to color of given class ax.legend([label(color(150, 210, 150)), label(color(247, 192, 135)), label(color(235, 8, 144)), label(color(102, 102, 102))], ['content-creator', 'scammer', 'comment-spammer', 'bid-bot'], numpoints = 1) ``` --- This allows you to place 3 features on the same chart at the same time. **followings + followers + muters:** <center></center> If we run the code as Jupyter Notebook, the charts are interactive. https://imgur.com/A60duNm.gif --- **sp ratio + follow ratio + reputation:** <center></center> --- **curation_rewards + posting_rewards + posts:** <center></center> --- **average_comment_len + comments_with_link_ratio + posts_to_comments_ratio:** <center></center> 3D visualization has its advantages and disadvantages. We can put more information on one chart, but on the other hand, they are sometimes less readable. #### Overview and comparison of available classifiers Last time, we used classifiers like the neural network and the decision tree. The latter turned out to have better accuracy. But there are also many other classifiers that you can use: - [BernoulliNB](http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB) - Naive Bayes classifier for multivariate Bernoulli models, is suitable for discrete data. - [GaussianNB](http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB) - Gaussian Naive Bayes classifier - [KNeighborsClassifier](http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier) - K-nearest neighbors classifier - [NearestCentroid](http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestCentroid.html#sklearn.neighbors.NearestCentroid) - Nearest Centroid classifier, similiar to KNeighborsClassifier - [LinearSVC](http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC) - Linear Support Vector Machine (SVM) classifier In addition to accuracy and confusion matrices, we will also determine the execution time for each classifier. --- ``` X_cols = columns y_cols = ['class'] X = df[X_cols] y = df[y_cols] # split data to training and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # convert from pandas dataframe to plain array y_train = np.array(y_train).ravel() y_test = np.array(y_test).ravel() classifiers = [ ('DecisionTreeClassifier', DecisionTreeClassifier(max_depth=8)), ('BernoulliNB', BernoulliNB()), ('GaussianNB', GaussianNB()), ('KNeighborsClassifier', KNeighborsClassifier()), ('NearestCentroid', NearestCentroid()), ('LinearSVC', LinearSVC())] # iterate over used classifiers for clf_name, clf in classifiers: start = time.time() clf.fit(X_train, y_train) # train y_pred = clf.predict(X_test) # test end = time.time() print('%25s - accuracy: %.3f, execution time: %.3f ms' % (clf_name, accuracy_score(y_pred, y_test), end - start)) cm = confusion_matrix(y_test, y_pred) plot_confusion_matrix(cm) ``` --- The results are as follows: Classifier|Accuracy|Execution time|Confusion matrix| -|-|-|- DecisionTreeClassifier|0.958|0.023| BernoulliNB|0.508|0.003| GaussianNB|0.360|0.003| KNeighborsClassifier|0.794|0.012| NearestCentroid|0.268|0.002| LinearSVC|0.656|0.933| --- The best result was obtained by the decision tree, which means that no better classifier was found for this problem. `LinearSVC` had a much longer execution time than other classifiers. To visualize the decision tree, just use the following code: ``` import graphviz from sklearn.tree import export_graphviz # convert decition tree metadata to graph graph = graphviz.Source(export_graphviz( classifiers[0][1], out_file=None, feature_names=X_cols, class_names=class_names, filled=True, rounded=True)) # set format of output file graph.format = 'png' # save graph to file graph.render('DecisionTreeClassifier') ``` ---  In the next part of the tutorial we will use [Ensemble learning](https://en.wikipedia.org/wiki/Ensemble_learning), i.e. using multiple machine learning algorithms to obtain better predictive performance. #### Curriculum 1. [Machine learning (Keras) and Steem #1: User vs bid-bot binary classification](https://steemit.com/utopian-io/@jacekw.dev/machine-learning-keras-and-steem-1-user-vs-bid-bot-binary-classification) 2. [Machine learning and Steem #2: Multiclass classification (content creator vs scammer vs comment spammer vs bid-bot)](https://steemit.com/utopian-io/@jacekw.dev/machine-learning-and-steem-2-multiclass-classification-content-creator-vs-scammer-vs-comment-spammer-vs-bid-bot) 3. [Machine learning and Steem #3: Account classification - accuracy improvement up to 95%](https://steemit.com/utopian-io/@jacekw.dev/machine-learning-and-steem-3-account-classification-accuracy-improvement-up-to-95) #### Conclusions - the more data the better - 3D visualization allows you to show more information than 2D visualization, but on the other hand, the data can be less readable - it is worth to check the available classifiers, although sometimes the best results are obtained by the simplest ones #### Proof of Work Done [Collecting data](https://github.com/jwladzinski/MachineLearningForSteem/blob/master/4/read_data.ipynb) [Classification](https://github.com/jwladzinski/MachineLearningForSteem/blob/master/4/classification.ipynb)
author | jacekw.dev | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
permlink | machine-learning-and-steem-4-account-classification-comparison-of-available-classifiers-3d-visualization-of-features-1534889167857 | ||||||||||||
category | utopian-io | ||||||||||||
json_metadata | {"app":"steemit/0.1","format":"markdown","image":["https://cdn.steemitimages.com/DQmfC76cTW6xPKuvAFhaxoBADgoteDKXCy6MdaCw9gS5UTu/image.png","https://cdn.steemitimages.com/DQmUEzwcnryicipeWJLubsHrTYc7MxB4n7RTVW4RuwxhdJM/image.png","https://cdn.steemitimages.com/DQmegQetwvqZ33ZrGuu6n3AqS4HUmQY4DTYkcaESLL2h6ss/image.png","https://imgur.com/A60duNm.gif","https://cdn.steemitimages.com/DQmfYHUWJ4dERQvXKgGjUoqiN5N3rZ5wQ8zPFPbzEnNwjHo/image.png","https://cdn.steemitimages.com/DQmUweW1GpzwASKAV1vKUKduQemJCAPG4okp7vRAf5mxkBT/image.png","https://cdn.steemitimages.com/DQmYH9hhrYVtCUYf9z5LWBGv7SwFS74CHsfGEMgitD8NmGG/image.png","https://steemitimages.com/400x400/https://cdn.steemitimages.com/DQmaCg7NPYkQgVMMVipSDd7S2MtLFnTKK9Xunqbgv3zHyxY/image.png","https://steemitimages.com/400x400/https://cdn.steemitimages.com/DQmTyzCgDfbzDH7ySJhuaQL9EopdG4Q7gk5MN9N1D1LpjTD/image.png","https://steemitimages.com/400x400/https://cdn.steemitimages.com/DQmb4SrDAyXtnRY1R2hbbLWBqBvBnBSshUih3RDQ8Nm11Qh/image.png","https://steemitimages.com/400x400/https://cdn.steemitimages.com/DQmbjaQcUcvbQhbxiPtirQzE6VrzqgRZm9EXUsSoZQrHyMT/image.png","https://steemitimages.com/400x400/https://cdn.steemitimages.com/DQmQcSfoTLBXEbWRcziUwqsLaVF64C5zviQGoU4YF8gvJKR/image.png","https://steemitimages.com/400x400/https://cdn.steemitimages.com/DQmYXypfixaHKmSXrprncRVvD5vudE4tJC97UoyVKyCJrde/image.png","https://cdn.steemitimages.com/DQmVszZizcFWjjRPEwgf7a8tMhYW8SBDuk4bQdynH63aSNn/image.png"],"tags":["utopian-io","tutorials","programming","machinelearning","python"],"links":["https://github.com/scikit-learn/scikit-learn","https://github.com/holgern/beem","https://steemsql.com/","https://www.python.org/","https://pandas.pydata.org/","https://matplotlib.org/","https://github.com/matplotlib/jupyter-matplotlib","https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html","https://seaborn.pydata.org/","http://jupyter.org/","http://scikit-learn.org/stable/","https://github.com/jwladzinski/MachineLearningForSteem/blob/master/4/read_data.ipynb","http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB","http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB","http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier","http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestCentroid.html#sklearn.neighbors.NearestCentroid","http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC","https://en.wikipedia.org/wiki/Ensemble_learning","https://steemit.com/utopian-io/@jacekw.dev/machine-learning-keras-and-steem-1-user-vs-bid-bot-binary-classification","https://steemit.com/utopian-io/@jacekw.dev/machine-learning-and-steem-2-multiclass-classification-content-creator-vs-scammer-vs-comment-spammer-vs-bid-bot","https://steemit.com/utopian-io/@jacekw.dev/machine-learning-and-steem-3-account-classification-accuracy-improvement-up-to-95","https://github.com/jwladzinski/MachineLearningForSteem/blob/master/4/classification.ipynb"],"community":"utopian"} | ||||||||||||
created | 2018-08-21 22:06:18 | ||||||||||||
last_update | 2018-08-28 17:17:24 | ||||||||||||
depth | 0 | ||||||||||||
children | 12 | ||||||||||||
last_payout | 2018-08-28 22:06:18 | ||||||||||||
cashout_time | 1969-12-31 23:59:59 | ||||||||||||
total_payout_value | 17.800 HBD | ||||||||||||
curator_payout_value | 5.792 HBD | ||||||||||||
pending_payout_value | 0.000 HBD | ||||||||||||
promoted | 0.000 HBD | ||||||||||||
body_length | 18,809 | ||||||||||||
author_reputation | 4,708,428,413,464 | ||||||||||||
root_title | "Machine learning and Steem #4: Account classification - comparison of available classifiers + 3D visualization of features" | ||||||||||||
beneficiaries |
| ||||||||||||
max_accepted_payout | 100,000.000 HBD | ||||||||||||
percent_hbd | 10,000 | ||||||||||||
post_id | 68,955,898 | ||||||||||||
net_rshares | 17,948,096,388,837 | ||||||||||||
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
noisy | 0 | 1,645,372,058,166 | 100% | ||
arcange | 0 | 48,037,074,102 | 5% | ||
steelman | 0 | 8,175,157,690 | 100% | ||
raphaelle | 0 | 2,888,644,039 | 5% | ||
lukmarcus | 0 | 32,377,944,131 | 30% | ||
warofcraft | 0 | 29,677,340,245 | 20% | ||
azizbd | 0 | 4,143,642,176 | 4% | ||
yuxi | 0 | 3,034,997,324 | 10% | ||
eroche | 0 | 46,403,594,827 | 100% | ||
lovenfreedom | 0 | 3,775,202,359 | 10% | ||
miniature-tiger | 0 | 54,256,443,849 | 50% | ||
mys | 0 | 26,225,872,436 | 25% | ||
jakipatryk | 0 | 55,576,174,662 | 100% | ||
diogogomes | 0 | 512,531,078 | 99% | ||
paulag | 0 | 31,247,810,636 | 24% | ||
luigi-tecnologo | 0 | 990,076,932 | 4% | ||
grecki-bazar-ewy | 0 | 10,875,487,920 | 50% | ||
rafalski | 0 | 27,450,454,459 | 66% | ||
drorion | 0 | 981,355,639 | 100% | ||
nicniezgrublem | 0 | 31,512,711,370 | 100% | ||
bachuslib | 0 | 19,458,562,260 | 100% | ||
pixelfan | 0 | 32,820,928,144 | 21% | ||
dreamarif | 0 | 73,510,458 | 8% | ||
andrejcibik | 0 | 38,466,907,686 | 100% | ||
saladyn276 | 0 | 4,055,523,358 | 100% | ||
m-san | 0 | 1,528,088,745 | 100% | ||
utopian-io | 0 | 14,793,570,437,588 | 21.21% | ||
shammi | 0 | 418,350,351 | 10% | ||
favcau | 0 | 24,716,526,917 | 50% | ||
aniafx1 | 0 | 21,525,756,880 | 100% | ||
steemtaker | 0 | 2,983,671,412 | 8% | ||
cheneats | 0 | 315,749,367 | 10% | ||
jahedkhan | 0 | 261,819,777 | 9% | ||
astromaniak | 0 | 18,799,694,280 | 50% | ||
greenorange | 0 | 605,432,593 | 100% | ||
piotr-galas | 0 | 4,464,482,455 | 100% | ||
amosbastian | 0 | 25,801,191,200 | 38.56% | ||
tdre | 0 | 6,354,888,439 | 100% | ||
kryptojanusz | 0 | 16,810,313,465 | 100% | ||
grzesiekb | 0 | 146,776,363,300 | 100% | ||
hallmann | 0 | 27,086,337,648 | 80% | ||
annaburska | 0 | 47,302,699,075 | 100% | ||
kapitanpolak | 0 | 17,961,970,516 | 100% | ||
jjay | 0 | 854,401,658 | 100% | ||
didymos | 0 | 1,503,918,001 | 100% | ||
slabiak.com | 0 | 551,407,442 | 100% | ||
marcon | 0 | 12,929,625,267 | 100% | ||
pkocjan | 0 | 10,204,165,914 | 100% | ||
legko | 0 | 239,472,820 | 1% | ||
nervi | 0 | 11,004,281,742 | 100% | ||
romualdd | 0 | 4,398,429,676 | 100% | ||
pomocnik | 0 | 349,224,023 | 100% | ||
herbacianymag | 0 | 1,284,114,516 | 100% | ||
statsexpert | 0 | 3,501,443,701 | 60% | ||
flocki | 0 | 1,098,650,991 | 100% | ||
leancenter | 0 | 519,320,401 | 100% | ||
rozku | 0 | 2,190,083,772 | 100% | ||
ciekawski | 0 | 442,477,657 | 100% | ||
matkodurko | 0 | 20,189,146,975 | 100% | ||
acbka | 0 | 488,534,590 | 100% | ||
maikl960 | 0 | 507,796,768 | 100% | ||
nikopu | 0 | 490,926,541 | 100% | ||
socpublic | 0 | 481,517,402 | 100% | ||
izydorjasiski | 0 | 498,509,241 | 100% | ||
frost013 | 0 | 494,412,426 | 100% | ||
igorik | 0 | 484,040,551 | 100% | ||
manyellee | 0 | 482,845,437 | 100% | ||
danielnewsomm | 0 | 491,252,716 | 100% | ||
dragonarts | 0 | 0 | 100% | ||
bndage | 0 | 482,998,521 | 100% | ||
patrickk97 | 0 | 482,995,802 | 100% | ||
drsensor | 0 | 0 | 100% | ||
aboriginalbook | 0 | 482,998,521 | 100% | ||
walrusaromatic | 0 | 493,906,238 | 100% | ||
gaws | 0 | 482,998,521 | 100% | ||
jakubgrab | 0 | 482,998,521 | 100% | ||
who-knock | 0 | 607,439,068 | 100% | ||
warnmembrane | 0 | 483,296,356 | 100% | ||
followmutable | 0 | 482,998,521 | 100% | ||
plopclone | 0 | 482,995,802 | 100% | ||
eczemamuon | 0 | 501,224,880 | 100% | ||
rattyopera | 0 | 482,995,802 | 100% | ||
shadytension | 0 | 495,146,640 | 100% | ||
octavesynodic | 0 | 482,995,802 | 100% | ||
xvegax | 0 | 495,146,640 | 100% | ||
nadyusha23 | 0 | 482,995,802 | 100% | ||
vadimstapov | 0 | 482,995,802 | 100% | ||
telephonewhy | 0 | 498,184,349 | 100% | ||
queensstar | 0 | 482,995,802 | 100% | ||
somalianfog | 0 | 507,297,477 | 100% | ||
bolttrite | 0 | 482,998,521 | 100% | ||
butlervault | 0 | 495,149,427 | 100% | ||
bezkresu | 0 | 1,208,512,740 | 80% | ||
shamefulhasty | 0 | 492,108,930 | 100% | ||
insidescraper | 0 | 482,998,521 | 100% | ||
diplute | 0 | 482,998,521 | 100% | ||
bloodsiege | 0 | 495,146,640 | 100% | ||
pyroxenebattery | 0 | 507,297,477 | 100% | ||
mercedesmetric | 0 | 482,995,802 | 100% | ||
ibericovar | 0 | 482,998,521 | 100% | ||
bohrbowling | 0 | 507,297,477 | 100% | ||
puffinbusy | 0 | 482,995,802 | 100% | ||
zombieprivilege | 0 | 482,995,802 | 100% | ||
listlabcoat | 0 | 482,998,521 | 100% | ||
anryper | 0 | 482,914,059 | 100% | ||
gorzhi3501 | 0 | 479,876,864 | 100% | ||
asavin88 | 0 | 479,876,864 | 100% | ||
theexcelclub | 0 | 15,560,604,278 | 100% | ||
iauns | 0 | 45,467,031,795 | 100% | ||
lecongdoo3 | 0 | 4,623,655,248 | 100% | ||
ptaku | 0 | 2,838,031,522 | 80% | ||
antoniel | 0 | 479,876,864 | 100% | ||
coincollecto | 0 | 546,610,560 | 100% | ||
toenailnano | 0 | 479,876,864 | 100% | ||
ecotypedatabase | 0 | 482,914,059 | 100% | ||
twittercohort | 0 | 482,914,059 | 100% | ||
dyogramsponson | 0 | 479,876,864 | 100% | ||
tuilleswine | 0 | 487,398,505 | 100% | ||
secretecandy | 0 | 493,485,983 | 100% | ||
steem.racing | 0 | 1,202,306,266 | 100% | ||
sbi8 | 0 | 14,550,220,157 | 12% | ||
trustbot | 0 | 24,748,535,444 | 100% | ||
steem-ua | 0 | 421,095,105,380 | 17.14% | ||
nartemov198 | 0 | 483,478,482 | 100% | ||
rodzherg | 0 | 483,470,608 | 100% | ||
dzhordz | 0 | 507,785,827 | 100% | ||
pashenkabutenev | 0 | 498,659,206 | 100% | ||
vika.maltseva90 | 0 | 489,524,206 | 100% | ||
perlov11 | 0 | 483,430,270 | 100% | ||
callmejoe | 0 | 259,660,053 | 100% | ||
kaczynski | 0 | 57,960,648 | 100% | ||
quasarframework | 0 | 570,430,151 | 100% | ||
randulakoralage | 0 | 0 | 100% |
Nice!! I'm about to defend my master thesis which is all about ML and Scikit-learn :) Btw isn't SteemSQL paid service?
author | matkodurko |
---|---|
permlink | re-jacekwdev-machine-learning-and-steem-4-account-classification-comparison-of-available-classifiers-3d-visualization-of-features-1534889167857-20180823t080328896z |
category | utopian-io |
json_metadata | {"tags":["utopian-io"],"app":"steemit/0.1"} |
created | 2018-08-23 08:03:30 |
last_update | 2018-08-23 08:03:30 |
depth | 1 |
children | 1 |
last_payout | 2018-08-30 08:03:30 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 118 |
author_reputation | 37,701,833,390,080 |
root_title | "Machine learning and Steem #4: Account classification - comparison of available classifiers + 3D visualization of features" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 69,099,076 |
net_rshares | 0 |
Thanks. Yes, SteemSQL is paid service, but definitely worth it, because at the moment it's the best database :)
author | jacekw.dev |
---|---|
permlink | re-matkodurko-re-jacekwdev-machine-learning-and-steem-4-account-classification-comparison-of-available-classifiers-3d-visualization-of-features-1534889167857-20180823t080632636z |
category | utopian-io |
json_metadata | {"tags":["utopian-io"],"app":"steemit/0.1"} |
created | 2018-08-23 08:06:42 |
last_update | 2018-08-23 08:06:42 |
depth | 2 |
children | 0 |
last_payout | 2018-08-30 08:06:42 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 111 |
author_reputation | 4,708,428,413,464 |
root_title | "Machine learning and Steem #4: Account classification - comparison of available classifiers + 3D visualization of features" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 69,099,315 |
net_rshares | 0 |
really cool. I have been looking at at way to use decision trees concepts ( entropy and information gain) on steemit data to calculate a user contribution score. Been working on it a while now. I love the visualizations. Wish I had time to actually try out this tutorial. really appreciate your efforts here. Nice work
author | paulag |
---|---|
permlink | re-jacekwdev-machine-learning-and-steem-4-account-classification-comparison-of-available-classifiers-3d-visualization-of-features-1534889167857-20180824t125912374z |
category | utopian-io |
json_metadata | {"tags":["utopian-io"],"app":"steemit/0.1"} |
created | 2018-08-24 12:59:12 |
last_update | 2018-08-24 12:59:12 |
depth | 1 |
children | 0 |
last_payout | 2018-08-31 12:59:12 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 324 |
author_reputation | 274,264,287,951,003 |
root_title | "Machine learning and Steem #4: Account classification - comparison of available classifiers + 3D visualization of features" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 69,225,303 |
net_rshares | 0 |
send you a dm on discord, hoping you will touch base with me
author | paulag |
---|---|
permlink | re-jacekwdev-machine-learning-and-steem-4-account-classification-comparison-of-available-classifiers-3d-visualization-of-features-1534889167857-20180827t161049198z |
category | utopian-io |
json_metadata | {"tags":["utopian-io"],"app":"steemit/0.1"} |
created | 2018-08-27 16:10:48 |
last_update | 2018-08-27 16:10:48 |
depth | 1 |
children | 0 |
last_payout | 2018-09-03 16:10:48 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 60 |
author_reputation | 274,264,287,951,003 |
root_title | "Machine learning and Steem #4: Account classification - comparison of available classifiers + 3D visualization of features" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 69,517,174 |
net_rshares | 0 |
Thank you for your contribution. - Please put comments in your code.For example: ``` //Short descript of scatter_plot_3d function def scatter_plot_3d(d, x, y, z): fig = plt.figure(figsize=(10, 10)) ax = Axes3D(fig) ax.scatter(d[x], d[y], d[z], c=d['class'], cmap=plt.cm.Accent, edgecolor='k', s=80) // what will do this function ax.set_xlabel(),ax.set_ylabel(), ax.set_zlabel() ax.set_xlabel(x) ax.set_ylabel(y) ax.set_zlabel(z) // what will do this function ax.legend ax.legend([label(color(150, 210, 150)), label(color(247, 192, 135)), label(color(235, 8, 144)), label(color(102, 102, 102))], ['content-creator', 'scammer', 'comment-spammer', 'bid-bot'], numpoints = 1) ``` <br/> Your contribution has been evaluated according to [Utopian policies and guidelines](https://join.utopian.io/guidelines), as well as a predefined set of questions pertaining to the category. To view those questions and the relevant answers related to your post, [click here](https://review.utopian.io/result/8/11113313). ---- Need help? Write a ticket on https://support.utopian.io/. Chat with us on [Discord](https://discord.gg/uTyJkNm). [[utopian-moderator]](https://join.utopian.io/)
author | portugalcoin |
---|---|
permlink | re-jacekwdev-machine-learning-and-steem-4-account-classification-comparison-of-available-classifiers-3d-visualization-of-features-1534889167857-20180822t125118112z |
category | utopian-io |
json_metadata | {"tags":["utopian-io"],"links":["https://join.utopian.io/guidelines","https://review.utopian.io/result/8/11113313","https://support.utopian.io/","https://discord.gg/uTyJkNm","https://join.utopian.io/"],"app":"steemit/0.1"} |
created | 2018-08-22 12:51:18 |
last_update | 2018-08-22 12:51:18 |
depth | 1 |
children | 1 |
last_payout | 2018-08-29 12:51:18 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 3.344 HBD |
curator_payout_value | 1.108 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 1,240 |
author_reputation | 598,828,312,571,988 |
root_title | "Machine learning and Steem #4: Account classification - comparison of available classifiers + 3D visualization of features" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 69,014,950 |
net_rshares | 3,152,867,347,053 |
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
crokkon | 0 | 2,213,715,170 | 4% | ||
espoem | 0 | 16,080,401,446 | 15% | ||
utopian-io | 0 | 3,096,428,052,396 | 4.45% | ||
favcau | 0 | 13,762,611,579 | 25% | ||
zapncrap | 0 | 2,204,035,963 | 5% | ||
amosbastian | 0 | 10,459,942,378 | 15.77% | ||
curx | 0 | 1,973,969,227 | 5% | ||
mightypanda | 0 | 9,404,890,718 | 50% | ||
mops2e | 0 | 339,728,176 | 10% |
Thank you for your review, @portugalcoin! So far this week you've reviewed 20 contributions. Keep up the good work!
author | utopian-io |
---|---|
permlink | re-re-jacekwdev-machine-learning-and-steem-4-account-classification-comparison-of-available-classifiers-3d-visualization-of-features-1534889167857-20180822t125118112z-20180824t125508z |
category | utopian-io |
json_metadata | "{"app": "beem/0.19.42"}" |
created | 2018-08-24 12:55:09 |
last_update | 2018-08-24 12:55:09 |
depth | 2 |
children | 0 |
last_payout | 2018-08-31 12:55:09 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.018 HBD |
curator_payout_value | 0.004 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 116 |
author_reputation | 152,955,367,999,756 |
root_title | "Machine learning and Steem #4: Account classification - comparison of available classifiers + 3D visualization of features" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 69,224,962 |
net_rshares | 16,345,979,318 |
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
espoem | 0 | 16,006,251,142 | 15% | ||
mops2e | 0 | 339,728,176 | 10% |
Hi @jacekw.dev! We are @steem-ua, a new Steem dApp, computing UserAuthority for all accounts on Steem. We are currently in test modus upvoting quality Utopian-io contributions! Nice work!
author | steem-ua |
---|---|
permlink | re-machine-learning-and-steem-4-account-classification-comparison-of-available-classifiers-3d-visualization-of-features-1534889167857-20180822t132806z |
category | utopian-io |
json_metadata | "{"app": "beem/0.19.54"}" |
created | 2018-08-22 13:28:06 |
last_update | 2018-08-22 13:28:06 |
depth | 1 |
children | 0 |
last_payout | 2018-08-29 13:28:06 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 187 |
author_reputation | 23,214,230,978,060 |
root_title | "Machine learning and Steem #4: Account classification - comparison of available classifiers + 3D visualization of features" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 69,018,133 |
net_rshares | 0 |
Congratulations @jacekw.dev! You have completed the following achievement on Steemit and have been rewarded with new badge(s) : [](http://steemitboard.com/@jacekw.dev) Award for the total payout received <sub>_Click on the badge to view your Board of Honor._</sub> <sub>_If you no longer want to receive notifications, reply to this comment with the word_ `STOP`</sub> > Do you like [SteemitBoard's project](https://steemit.com/@steemitboard)? Then **[Vote for its witness](https://v2.steemconnect.com/sign/account-witness-vote?witness=steemitboard&approve=1)** and **get one more award**!
author | steemitboard |
---|---|
permlink | steemitboard-notify-jacekwdev-20180829t031005000z |
category | utopian-io |
json_metadata | {"image":["https://steemitboard.com/img/notify.png"]} |
created | 2018-08-29 03:10:03 |
last_update | 2018-08-29 03:10:03 |
depth | 1 |
children | 0 |
last_payout | 2018-09-05 03:10:06 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 679 |
author_reputation | 38,975,615,169,260 |
root_title | "Machine learning and Steem #4: Account classification - comparison of available classifiers + 3D visualization of features" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 69,659,865 |
net_rshares | 0 |
Congratulations @jacekw.dev! You have completed the following achievement on Steemit and have been rewarded with new badge(s) : [](http://steemitboard.com/@jacekw.dev) Award for the number of upvotes <sub>_Click on the badge to view your Board of Honor._</sub> <sub>_If you no longer want to receive notifications, reply to this comment with the word_ `STOP`</sub> > Do you like [SteemitBoard's project](https://steemit.com/@steemitboard)? Then **[Vote for its witness](https://v2.steemconnect.com/sign/account-witness-vote?witness=steemitboard&approve=1)** and **get one more award**!
author | steemitboard |
---|---|
permlink | steemitboard-notify-jacekwdev-20180831t230914000z |
category | utopian-io |
json_metadata | {"image":["https://steemitboard.com/img/notify.png"]} |
created | 2018-08-31 23:09:12 |
last_update | 2018-08-31 23:09:12 |
depth | 1 |
children | 0 |
last_payout | 2018-09-07 23:09:12 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 674 |
author_reputation | 38,975,615,169,260 |
root_title | "Machine learning and Steem #4: Account classification - comparison of available classifiers + 3D visualization of features" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 69,944,733 |
net_rshares | 0 |
Congratulations @jacekw.dev! You have completed the following achievement on the Steem blockchain and have been rewarded with new badge(s) : [](http://steemitboard.com/@jacekw.dev) Award for the number of upvotes <sub>_Click on the badge to view your Board of Honor._</sub> <sub>_If you no longer want to receive notifications, reply to this comment with the word_ `STOP`</sub> **Do not miss the last post from @steemitboard:** <table><tr><td><a href="https://steemit.com/steemitboard/@steemitboard/steemitboard-ranking-update-steem-power-followers-and-following-added"><img src="https://steemitimages.com/64x128/https://cdn.steemitimages.com/DQmfRVpHQhLDhnjDtqck8GPv9NPvNKPfMsDaAFDE1D9Er2Z/header_ranking.png"></a></td><td><a href="https://steemit.com/steemitboard/@steemitboard/steemitboard-ranking-update-steem-power-followers-and-following-added">SteemitBoard Ranking update - Steem Power, Followers and Following added</a></td></tr></table> > Support [SteemitBoard's project](https://steemit.com/@steemitboard)! **[Vote for its witness](https://v2.steemconnect.com/sign/account-witness-vote?witness=steemitboard&approve=1)** and **get one more award**!
author | steemitboard |
---|---|
permlink | steemitboard-notify-jacekwdev-20181018t085002000z |
category | utopian-io |
json_metadata | {"image":["https://steemitboard.com/img/notify.png"]} |
created | 2018-10-18 08:50:03 |
last_update | 2018-10-18 08:50:03 |
depth | 1 |
children | 0 |
last_payout | 2018-10-25 08:50:03 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 1,247 |
author_reputation | 38,975,615,169,260 |
root_title | "Machine learning and Steem #4: Account classification - comparison of available classifiers + 3D visualization of features" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 73,538,175 |
net_rshares | 0 |
Congratulations @jacekw.dev! You have completed the following achievement on the Steem blockchain and have been rewarded with new badge(s) : <table><tr><td>https://steemitimages.com/60x70/http://steemitboard.com/@jacekw.dev/votes.png?201810251239</td><td>You made more than 700 upvotes. Your next target is to reach 800 upvotes.</td></tr> </table> <sub>_[Click here to view your Board of Honor](https://steemitboard.com/@jacekw.dev)_</sub> <sub>_If you no longer want to receive notifications, reply to this comment with the word_ `STOP`</sub> **Do not miss the last post from @steemitboard:** <table><tr><td><a href="https://steemit.com/steemitboard/@steemitboard/steemitboard-notifications-improved"><img src="https://steemitimages.com/64x128/http://i.cubeupload.com/NgygYH.png"></a></td><td><a href="https://steemit.com/steemitboard/@steemitboard/steemitboard-notifications-improved">SteemitBoard notifications improved</a></td></tr><tr><td><a href="https://steemit.com/steemitboard/@steemitboard/steemitboard-ranking-update-resteem-and-resteemed-added"><img src="https://steemitimages.com/64x128/https://cdn.steemitimages.com/DQmfRVpHQhLDhnjDtqck8GPv9NPvNKPfMsDaAFDE1D9Er2Z/header_ranking.png"></a></td><td><a href="https://steemit.com/steemitboard/@steemitboard/steemitboard-ranking-update-resteem-and-resteemed-added">SteemitBoard Ranking update - Resteem and Resteemed added</a></td></tr></table> > Support [SteemitBoard's project](https://steemit.com/@steemitboard)! **[Vote for its witness](https://v2.steemconnect.com/sign/account-witness-vote?witness=steemitboard&approve=1)** and **get one more award**!
author | steemitboard |
---|---|
permlink | steemitboard-notify-jacekwdev-20181026t005153000z |
category | utopian-io |
json_metadata | {"image":["https://steemitboard.com/img/notify.png"]} |
created | 2018-10-26 00:51:51 |
last_update | 2018-10-26 00:51:51 |
depth | 1 |
children | 0 |
last_payout | 2018-11-02 00:51:51 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 1,621 |
author_reputation | 38,975,615,169,260 |
root_title | "Machine learning and Steem #4: Account classification - comparison of available classifiers + 3D visualization of features" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 74,059,769 |
net_rshares | 0 |
Hey @jacekw.dev **Thanks for contributing on Utopian**. Weβre already looking forward to your next contribution! **Want to chat? Join us on Discord https://discord.gg/h52nFrV.** <a href='https://v2.steemconnect.com/sign/account-witness-vote?witness=utopian-io&approve=1'>Vote for Utopian Witness!</a>
author | utopian-io |
---|---|
permlink | re-machine-learning-and-steem-4-account-classification-comparison-of-available-classifiers-3d-visualization-of-features-1534889167857-20180823t121011z |
category | utopian-io |
json_metadata | "{"app": "beem/0.19.42"}" |
created | 2018-08-23 12:10:12 |
last_update | 2018-08-23 12:10:12 |
depth | 1 |
children | 0 |
last_payout | 2018-08-30 12:10:12 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 303 |
author_reputation | 152,955,367,999,756 |
root_title | "Machine learning and Steem #4: Account classification - comparison of available classifiers + 3D visualization of features" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 69,117,710 |
net_rshares | 0 |