create account

Sequence And Series - Part 2 by leoumesh

View this thread on: hive.blogpeakd.comecency.com
· @leoumesh ·
$5.66
Sequence And Series - Part 2
Hello and a warm and lovely greetings to all steemians. It's me @leoumesh and today I am gonna be continuing with the rest of topics related to sequence and series. If you are unfamiliar with this one, please [Click Here](https://steemit.com/steemstem/@leoumesh/sequence-and-series-a-simple-introduction) to visit previous article where I had made an introductory explanation on sequence and series, their types along with formulae. 

So lets begin with the rest of our topic.

<center>![intro.png](https://steemitimages.com/DQmXcK1xbqn4LJX1qixcobx2ofS9adYW4y7GJPgCTLmyGyz/intro.png)</center>
<center>***Designed from Adobe Photoshop CS6***</center>

<br>

<h1>I. Arithmetico-Geometric Series</h1>

The terms of an AS are:
<center>*a , a+d , a+2d , a+3d , .......*</center>

The terms of a GS are:

<center>1 , *r , r<sup>2</sup> , r<sup>3</sup> , .....* </center>

A series of the type
<center>*a*.1 + *(a+d)r + (a+2d)r<sup>2</sup> +  (a+3d)r<sup>3</sup> + .....* </center>
whose each term is the product of the corresponding terms of an AS and a GS is known as the ***arithmetico-geometric***  series

The following example will illustrate what is arithmetico-geometric series:

<center>![](https://steemitimages.com/DQmbeiocBKtcDLCBdDWiZ9cThK3jsQxeRH6cyDJ12dZw7k6/image.png)</center>

The given series may be written as follows:

<center>![](https://steemitimages.com/DQmTAci7yWjZoKi59B5zaZvaZ4wEASCFtfPuNTv5UcMLBMq/image.png)</center>

Clearly, the above series is the arithmetic-geometric series with common difference = 1 and common ratio = ![](https://steemitimages.com/DQmWghkNgDdjijosqmVJFcbXDFNCqnRc4PLyoujvCJBbzN1/image.png)


<h2>General Term of Arithmetico-Geometric Series</h2>
In the sequence
<center>*a*.1 + *(a+d)r + (a+2d)r<sup>2</sup> +  (a+3d)r<sup>3</sup> + .....* </center>

The *n<sup>th</sup>* term of arithemtico-geometric series is given by multiplying the corresponding general terms of the arithmetic sequence (AS) and the geometric sequence (GS) as,

<center>![](https://steemitimages.com/DQmZTZGp8ZGR9z4V8jGLLsmyDWEP4PDaboKRV9v2eLTpSew/image.png)</center>

<h2>Sum of n terms</h2>

The sum of *n* terms of arithmetico-geometric series is given by,

<center>S<sub>n</sub> = ![](https://steemitimages.com/DQmdH5d6XZCQamyRsv4FTVPWcDEUJf87KoK3iCaeJVY9GW8/image.png)</center>

<br>

<h1>II. Sum of the Natural Numbers</h1>
The numbers 1 , 2 , 3 , 4 , ..... are said to be the natural numbers. Now , we derive some of the formulae for the sum of the first *n* natural numbers, the sum of the squares of the first *n* natural numbers and the sum of the cubes of the first *n* natural numbers.

<br>
<h2>1. Sum of the first ***n*** natural numbers</h2>

The first ***n*** natural numbers are 1 , 2 , 3 , ....... , n

<center>Let , ![](https://steemitimages.com/DQmUTGx4H8oSHa6svnwSPKUZTRfMVJNQSkZWSJATXJSgDhc/image.png)</center>

The sum of first n terms of the arithmetic series is given by S<sub>n</sub> = ![](https://steemitimages.com/DQmaJEzbHf1CZS1nQksR4J2AGAsr91d3ezn59WxVifbwt5a/image.png)[2a+ (n -1 )d]. So, 
<center>S<sub>n</sub>![](https://steemitimages.com/DQmVBTCgPGbHqASgj679YutyJiJEhtNdkJWvG8SYPo8iFhG/image.png)</center>
<center>or, S<sub>n</sub> = ![](https://steemitimages.com/DQmUoJ8FVoFjLLTn2PwxBHFxkov8RHETSzQqSvL9qt8hVeg/image.png)</center>
<center>![](https://steemitimages.com/DQmNxVU43yPusk85bgyb8f9GjQjHqE1iFHXkQpp765HeDcA/image.png)</center>

<br>
<h2>2. Sum of the first ***n*** even natural numbers</h2>

The first ***n*** even natural numbers are 2 , 4 , 6 , ...... , n terms

<center>Let , ![](https://steemitimages.com/DQmTwvhoQR2p4idUtUkeQrY8zAtBnQJ7nyaCt1UNzQZvmTP/image.png)</center>
<center>or, ![](https://steemitimages.com/DQmVNv4AnNBk2n5y3QDi4jbgoTdMLKEA6xTqzu6aFzvJCNo/image.png)</center>
<center>or, ![](https://steemitimages.com/DQmWoWw2w4q4rKFSukpo1beSzNDPfKM9YB6XAhAVYmuezAr/image.png)</center>
<center>![](https://steemitimages.com/DQmZVHjNq9xZbjGVaHDaP1u4mmuJaLVUe7jmdvtMLwHr9HY/image.png)</center>
<br>

<h2>3. Sum of the first***n*** odd natural numbers</h2>
The first ***n*** odd natural numbers are 1 , 3 , 5 , ...... , n terms
<center>Let , ![](https://steemitimages.com/DQmemQ6BTqvJUovbqv83i874JMWkRt62vGZyitDvSR823aB/image.png)</center>

The sum of first n terms of the arithmetic series is given by S<sub>n</sub> = ![](https://steemitimages.com/DQmaJEzbHf1CZS1nQksR4J2AGAsr91d3ezn59WxVifbwt5a/image.png)[2a+ (n -1 )d]. So, 
<center>![](https://steemitimages.com/DQmQdNoPTVADEMLddYZb9TREEjnMYSFsDPxYDEvAuGuZMTy/image.png)</center>
<center>or, ![](https://steemitimages.com/DQmRZ7pft379FdUeJgGF22qEPuXKA1zJQZGwB5yjRYvkHS8/image.png) </center>
<center>![](https://steemitimages.com/DQmVx27eLcvX47Rh9oqXmPyXC3duVjgowb9hB2Fg52MqdbD/image.png)</center>
<br>

 <h2>4. Sum of the squares of the first ***n*** natural numbers</h2>

The sum of the squares of the first ***n*** natural numbers is given by the formula,
<center>![](https://steemitimages.com/DQmYJVGSoRkf1B972AfuGgLAbKRtoTM2yGu8K9mLgbUp7JM/image.png)</center>
<br>


 <h2>5. Sum of the cubes of the first ***n*** natural numbers</h2>

The sum of the cubes of the first ***n*** natural numbers is given by the formula,
<center>![](https://steemitimages.com/DQmagamkVJhRvLT8jRNFPc5LoCvukNwwr37ZreKu7rvi53N/image.png)</center>

The sum of the cubes of the first ***n*** natural numbers is the square of the sum of the first ***n*** natural numbers.


<br>
<h1>III. Means</h1>

A finite sequence consisting of more than two terms has one or more terms in between the first and the last terms. These terms are called the ***arithmetic , geometric or harmonic means*** according as the sequences are arithmetic , geometric or harmonic. In other words, we have the following definitions :

I. Any term in between the first and last terms of an arithmetic sequence is called an ***arithmetic mean***(AM).

II. Any term in between the first and last terms of a geometric sequence is called a ***geometric mean***(GM).

III. Any term in between the first and last terms of a harmonic sequence is called a ***harmonic mean***(HM).

<br>

<h1>**Formula for Means**</h1>

<h2>Formula 1</h2>

Given any two numbers a and b , the AM , GM , and HM between them are given by :

<center>1. AM = A = ![](https://steemitimages.com/DQmPrEQnnzpHSJjdrpgUUdgUkBDPcnhfHrhvtR3JPEAeuY5/image.png)</center>

<center>2. GM = G = ![](https://steemitimages.com/DQmX8XscbFyVfkGh7vPHg4tHsgRt1kYeUJWG5wcAYE48Rpc/image.png)</center>

<center>3. HM = H = ![](https://steemitimages.com/DQmNySHvfEYk8agGEMui6xrtsvqQjBh8YUvQd31jkcTzHjD/image.png)</center>

<br>

<h2>Proof</h2>

1. If 'A' is the single AM between *a* and *b* , then *a* , A , *b* form an AS. Now by the defintion of an AS,

<center>A - a = b - A</center>
<center>or, 2A = a + b</center> 
<center>or, A = ![](https://steemitimages.com/DQmabUL7TNu3fs5KPQT3KqQjVQSbMBaqkBxtZRxdV4R3Y7u/image.png)</center> 
<center>![](https://steemitimages.com/DQmSpBSaLzce4hcWoHM9KyHYUigsRRMuzPfeMabFTQknkgb/image.png) A = ![](https://steemitimages.com/DQmabUL7TNu3fs5KPQT3KqQjVQSbMBaqkBxtZRxdV4R3Y7u/image.png)</center>

2. If 'G' is the single GM between *a* and *b* , then *a* , G , *b* form a GS. Now by the definition of a GS,

<center>![](https://steemitimages.com/DQmPLjYKEDFC61DxjDB2U78YnyPoyGHoyryzaEuyQBR7Nrt/image.png)</center>
<center>or, ![](https://steemitimages.com/DQmaxMPPayXxb6MqiH4i9yfUZiTPfaEAgJe3eCkszJSmXsy/image.png)</center>
<center>![](https://steemitimages.com/DQmVEnsq14dzH2YHcnsrXzFYMQeWfQ4Ztxc8o2BU5XMiady/image.png)</center>

3. If 'H' be a single HM between *a* and *b*, then *a* , H , *b* are in HP.

<center>i.e. ![](https://steemitimages.com/DQmcfRaRdeHNjtg4NGi6LYuKRk1NtdfFKJb6JHKHCjAEWLA/image.png) are in AP</center>

<center>Hence,  ![](https://steemitimages.com/DQmXaGoE3MqiHoFPWui7c794Z7YuSoeDp6FhxLjXtWM6Ezt/image.png)</center>
<center>or, ![](https://steemitimages.com/DQmeJPMVjB8op2PjtQSWaNkaHgFhWPEH8rC1mv7k432WPFH/image.png)</center>
<center>or, ![](https://steemitimages.com/DQmPbkJoQghRYfR8NKprbZjSqfgv4XeZ895uUXwwUGLsWn5/image.png)</center>
<center>![](https://steemitimages.com/DQmfPZP6D5GCy3a2v9F3AcpboFcp2BvUwYZpCNbasmVhcQj/image.png)</center>

<br>

<h2>Formula 2</h2>

Given any two numbers *a* and *b* , the *n* AM's between them are given by,

<center>*a + d , a + 2d , a + 3d , a + 4d , ........ , a + nd*</center>

where , <center>![](https://steemitimages.com/DQmQnhTNMqiga6zxhbptai4uRTCCiPfDijA1cBKCHkXhuJi/image.png)</center>

<h2>Proof</h2>

Let ***m<sub>1</sub> , m<sub>2</sub> , m<sub>3</sub> , ........... , m<sub>n</sub>*** be *n* AM's to be inserted between *a* and *b*. Then,

<center>***a , m<sub>1</sub> , m<sub>2</sub> , m<sub>3</sub> , ........... , m<sub>n</sub> , b*** are in AP</center>

The number of terms in the above AS is *n*+2 of which the first term is *a* and the last term *b*, the (*n* + 2)<sup>th</sup> term of an AS.

If *d* is the common difference then

<center>*b* = *a* + (n + 2 - 1)d</center>
<center>or, *b* - *a* = (n + 1)d</center>
<center>![](https://steemitimages.com/DQmb3ZNFPxRJKCmZvcx3oFjW3JH88HZEvMg3i9Lhxof267W/image.png)</center>

Now, <center>*m*<sub>1</sub> = *t*<sub>2</sub> = *a* + *d*</center>
 <center>*m*<sub>2</sub> = *t*<sub>3</sub> = *a* + 2*d*</center>
 <center>*m*<sub>3</sub> = *t*<sub>4</sub> = *a* + 3*d*</center>
<center>.... ..... ..... .....</center>
<center>.... ..... ..... .....</center>
<center>*m<sub>n</sub>* = *t<sub>n+1*</sub> = *a + nd*</center>

<br>


<h2>Formula 3</h2>

Given any two numbers *a* and *b* , the *n* GM's between them are given by *ar , ar<sup>2</sup> , ar<sup>3</sup> , ..... , ar<sup>n</sup>, where  ![](https://steemitimages.com/DQmYGnSa6FbnDD216NESmn9PqoMrtfTmKXFhuDiU1bdXwRi/image.png)

<h2>Proof</h2>

Let G<sub>1</sub> , G<sub>2</sub> , G<sub>3</sub>  , ...... , G<sub>*n*</sub> be *n* GM's between *a* and *b* then, 

<center>*a* , G<sub>1</sub> , G<sub>2</sub> , G<sub>3</sub>  , ...... , G<sub>*n*</sub> , *b* form a GS</center> 

The number of terms in the above GS is (*n*+2) of which the first term is *a* and the last term *b* , the (*n*+2)<sup>th</sup> term of a GS.

If *r* be the common ratio then , 

<center>b = ar<sup>*n*+ 2 - 1</sup></center> 
<center>or, b = ar<sup>n + 1</sup></center>
<center>or, ![](https://steemitimages.com/DQmYGnSa6FbnDD216NESmn9PqoMrtfTmKXFhuDiU1bdXwRi/image.png) </center>

Now, <center>G<sub>1</sub> = *t<sub>2</sub>* = *ar*</center>
<center>G<sub>2</sub> = *t<sub>3</sub>* = *ar*<sup>2</sup></center>
<center>G<sub>3</sub> = *t<sub>4</sub>* = *ar*<sup>3</sup></center>
<center>.... ..... ..... .....</center>
<center>.... ..... ..... .....</center>
<center>G<sub>*n*</sub> = *t<sub>n + 1</sub>* = *ar*<sup>n</sup></center>

<br>

<h2>Formual 4</h2>

The AM , GM , HM between any two unequal positive numbers satisfy the following relations :

1. ( GM )<sup>2</sup> = ( AM ) * ( HM )

2. AM > GM > HM

<h2>Proof</h2>

Let *a* and *b* be two unequal positive numbers. Then,

<center>AM = ![](https://steemitimages.com/DQmabUL7TNu3fs5KPQT3KqQjVQSbMBaqkBxtZRxdV4R3Y7u/image.png)</center>
<center>![](https://steemitimages.com/DQmWy9D5yLgCCZp7ZACK5BA9Ga5vGk5QQMFYD67urVuEwaY/image.png) ( only positive square root is taken )</center>
and, <center>![](https://steemitimages.com/DQmW8rU3u88zuo5FCD4a5xrZGKGmdTYN3GUJztgHNCYShGj/image.png)</center>

To prove the first part, we have

<center>AM * HM = ![](https://steemitimages.com/DQmabUL7TNu3fs5KPQT3KqQjVQSbMBaqkBxtZRxdV4R3Y7u/image.png) * ![](https://steemitimages.com/DQmNySHvfEYk8agGEMui6xrtsvqQjBh8YUvQd31jkcTzHjD/image.png)</center>

<center>or, ![](https://steemitimages.com/DQmZpwXoD7h12LANzfhG6ZevJuxD642UNuryCuF2EuMEa7u/image.png)</center>
<center>or, ![](https://steemitimages.com/DQmV2XDFmLgMFTUjMPyi4HWp46F5v1qeN6MXShYjpxxzUwn/image.png)</center>

<center>![](https://steemitimages.com/DQmSpBSaLzce4hcWoHM9KyHYUigsRRMuzPfeMabFTQknkgb/image.png) AM * HM = ( GM )<sup>2</sup></center>

This result shows that GM is again the geometric mean between AM and HM.

To prove the second part , consider

AM - GM = ![](https://steemitimages.com/DQmebCFNKpiA5Qc3boRx8AvpVAaPdFzMVPFnvQSzQGN2gr8/image.png)

or, AM - GM = ![](https://steemitimages.com/DQmbHHuRfLkopjJGSi6PXhFimks7H35xGH6R4HfqYgiVfVJ/image.png)

or, AM - GM = ![](https://steemitimages.com/DQmSRZbdXT14XA5pA8UN6wafo5Bt3Y44fw6ZBAV3oMpXUPk/image.png)

Which is always positive as we have squared the term. 

<center>Hence, AM > GM</center>

Again,<center> ( AM ) * ( HM ) = ( GM ) * ( GM )</center>
<center>or, ![](https://steemitimages.com/DQmb4bZuEvWU63PUmdDGZR8YmsnX8nzXeFZ4eJNM82rnTMJ/image.png)</center>
<center>Since , AM > GM</center>
</center>We have, GM > HM</center>

Combining the two , we have

<center>AM > GM > HM</center>

This result shows that AM , GM and HM are in decreasing order of magnitudes.

<hr>
<br>

***Thank you for taking your time in reading this article. Please feel free to comment and interact.***
<hr>
<br>

<h1>References</h1>

1. https://www.aplustopper.com/arithmetico-geometric-sequence/

2. https://www.careerbless.com/aptitude/qa/sequence_series_imp.php

3. Mathematical expression coded on : http://www.quicklatex.com/

<hr>
<br>

<h1>steemstem</h1>

<center>https://steemitimages.com/DQmW9GJdsBreapMb5csEow9rj9LCv1CbcZ52rrfttHyzQXs/ylp.gif</center>

**SteemSTEM is a community driven project which seeks to promote well-written and informative Science, Technology, Engineering and Mathematics ( STEM ) posts on Steemit. The project involves curating STEM-related posts through upvoting, resteeming, offering constructive feedback, supporting scientific contests, and other related activities.**

DISCORD: https://discord.gg/j29kgjS
👍  , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and 30 others
properties (23)
authorleoumesh
permlinksequence-and-series-part-2
categorysteemstem
json_metadata{"tags":["steemstem","steemiteducation","education","mathematics","science"],"users":["leoumesh"],"image":["https://steemitimages.com/DQmXcK1xbqn4LJX1qixcobx2ofS9adYW4y7GJPgCTLmyGyz/intro.png","https://steemitimages.com/DQmbeiocBKtcDLCBdDWiZ9cThK3jsQxeRH6cyDJ12dZw7k6/image.png","https://steemitimages.com/DQmTAci7yWjZoKi59B5zaZvaZ4wEASCFtfPuNTv5UcMLBMq/image.png","https://steemitimages.com/DQmWghkNgDdjijosqmVJFcbXDFNCqnRc4PLyoujvCJBbzN1/image.png","https://steemitimages.com/DQmZTZGp8ZGR9z4V8jGLLsmyDWEP4PDaboKRV9v2eLTpSew/image.png","https://steemitimages.com/DQmdH5d6XZCQamyRsv4FTVPWcDEUJf87KoK3iCaeJVY9GW8/image.png","https://steemitimages.com/DQmUTGx4H8oSHa6svnwSPKUZTRfMVJNQSkZWSJATXJSgDhc/image.png","https://steemitimages.com/DQmaJEzbHf1CZS1nQksR4J2AGAsr91d3ezn59WxVifbwt5a/image.png","https://steemitimages.com/DQmVBTCgPGbHqASgj679YutyJiJEhtNdkJWvG8SYPo8iFhG/image.png","https://steemitimages.com/DQmUoJ8FVoFjLLTn2PwxBHFxkov8RHETSzQqSvL9qt8hVeg/image.png","https://steemitimages.com/DQmNxVU43yPusk85bgyb8f9GjQjHqE1iFHXkQpp765HeDcA/image.png","https://steemitimages.com/DQmTwvhoQR2p4idUtUkeQrY8zAtBnQJ7nyaCt1UNzQZvmTP/image.png","https://steemitimages.com/DQmVNv4AnNBk2n5y3QDi4jbgoTdMLKEA6xTqzu6aFzvJCNo/image.png","https://steemitimages.com/DQmWoWw2w4q4rKFSukpo1beSzNDPfKM9YB6XAhAVYmuezAr/image.png","https://steemitimages.com/DQmZVHjNq9xZbjGVaHDaP1u4mmuJaLVUe7jmdvtMLwHr9HY/image.png","https://steemitimages.com/DQmemQ6BTqvJUovbqv83i874JMWkRt62vGZyitDvSR823aB/image.png","https://steemitimages.com/DQmQdNoPTVADEMLddYZb9TREEjnMYSFsDPxYDEvAuGuZMTy/image.png","https://steemitimages.com/DQmRZ7pft379FdUeJgGF22qEPuXKA1zJQZGwB5yjRYvkHS8/image.png","https://steemitimages.com/DQmVx27eLcvX47Rh9oqXmPyXC3duVjgowb9hB2Fg52MqdbD/image.png","https://steemitimages.com/DQmYJVGSoRkf1B972AfuGgLAbKRtoTM2yGu8K9mLgbUp7JM/image.png","https://steemitimages.com/DQmagamkVJhRvLT8jRNFPc5LoCvukNwwr37ZreKu7rvi53N/image.png","https://steemitimages.com/DQmPrEQnnzpHSJjdrpgUUdgUkBDPcnhfHrhvtR3JPEAeuY5/image.png","https://steemitimages.com/DQmX8XscbFyVfkGh7vPHg4tHsgRt1kYeUJWG5wcAYE48Rpc/image.png","https://steemitimages.com/DQmNySHvfEYk8agGEMui6xrtsvqQjBh8YUvQd31jkcTzHjD/image.png","https://steemitimages.com/DQmabUL7TNu3fs5KPQT3KqQjVQSbMBaqkBxtZRxdV4R3Y7u/image.png","https://steemitimages.com/DQmSpBSaLzce4hcWoHM9KyHYUigsRRMuzPfeMabFTQknkgb/image.png","https://steemitimages.com/DQmPLjYKEDFC61DxjDB2U78YnyPoyGHoyryzaEuyQBR7Nrt/image.png","https://steemitimages.com/DQmaxMPPayXxb6MqiH4i9yfUZiTPfaEAgJe3eCkszJSmXsy/image.png","https://steemitimages.com/DQmVEnsq14dzH2YHcnsrXzFYMQeWfQ4Ztxc8o2BU5XMiady/image.png","https://steemitimages.com/DQmcfRaRdeHNjtg4NGi6LYuKRk1NtdfFKJb6JHKHCjAEWLA/image.png","https://steemitimages.com/DQmXaGoE3MqiHoFPWui7c794Z7YuSoeDp6FhxLjXtWM6Ezt/image.png","https://steemitimages.com/DQmeJPMVjB8op2PjtQSWaNkaHgFhWPEH8rC1mv7k432WPFH/image.png","https://steemitimages.com/DQmPbkJoQghRYfR8NKprbZjSqfgv4XeZ895uUXwwUGLsWn5/image.png","https://steemitimages.com/DQmfPZP6D5GCy3a2v9F3AcpboFcp2BvUwYZpCNbasmVhcQj/image.png","https://steemitimages.com/DQmQnhTNMqiga6zxhbptai4uRTCCiPfDijA1cBKCHkXhuJi/image.png","https://steemitimages.com/DQmb3ZNFPxRJKCmZvcx3oFjW3JH88HZEvMg3i9Lhxof267W/image.png","https://steemitimages.com/DQmYGnSa6FbnDD216NESmn9PqoMrtfTmKXFhuDiU1bdXwRi/image.png","https://steemitimages.com/DQmWy9D5yLgCCZp7ZACK5BA9Ga5vGk5QQMFYD67urVuEwaY/image.png","https://steemitimages.com/DQmW8rU3u88zuo5FCD4a5xrZGKGmdTYN3GUJztgHNCYShGj/image.png","https://steemitimages.com/DQmZpwXoD7h12LANzfhG6ZevJuxD642UNuryCuF2EuMEa7u/image.png","https://steemitimages.com/DQmV2XDFmLgMFTUjMPyi4HWp46F5v1qeN6MXShYjpxxzUwn/image.png","https://steemitimages.com/DQmebCFNKpiA5Qc3boRx8AvpVAaPdFzMVPFnvQSzQGN2gr8/image.png","https://steemitimages.com/DQmbHHuRfLkopjJGSi6PXhFimks7H35xGH6R4HfqYgiVfVJ/image.png","https://steemitimages.com/DQmSRZbdXT14XA5pA8UN6wafo5Bt3Y44fw6ZBAV3oMpXUPk/image.png","https://steemitimages.com/DQmb4bZuEvWU63PUmdDGZR8YmsnX8nzXeFZ4eJNM82rnTMJ/image.png","https://steemitimages.com/DQmW9GJdsBreapMb5csEow9rj9LCv1CbcZ52rrfttHyzQXs/ylp.gif"],"links":["https://steemit.com/steemstem/@leoumesh/sequence-and-series-a-simple-introduction","https://www.aplustopper.com/arithmetico-geometric-sequence/","https://www.careerbless.com/aptitude/qa/sequence_series_imp.php","http://www.quicklatex.com/","https://discord.gg/j29kgjS"],"app":"steemit/0.1","format":"markdown"}
created2018-04-09 14:14:06
last_update2018-04-09 14:14:06
depth0
children3
last_payout2018-04-16 14:14:06
cashout_time1969-12-31 23:59:59
total_payout_value4.433 HBD
curator_payout_value1.226 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length13,614
author_reputation212,340,493,251,438
root_title"Sequence And Series - Part 2"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id49,143,264
net_rshares1,241,941,095,136
author_curate_reward""
vote details (94)
@resteemator ·
@resteemator is a new bot casting votes for its followers. Follow @resteemator and vote this comment to increase your chance to be voted in the future!
properties (22)
authorresteemator
permlink20180411t052706006z
categorysteemstem
json_metadata{"tags":["steem"],"app":"steemjs/test"}
created2018-04-11 05:27:06
last_update2018-04-11 05:27:06
depth1
children0
last_payout2018-04-18 05:27:06
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length151
author_reputation-248,953,111,874
root_title"Sequence And Series - Part 2"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id49,430,783
net_rshares0
@teamnepal ·
Great, take our 0.1 SBD help for this post and join our discord !
<a href="https://discord.gg/DJEXXs">Click here to join </a>
properties (22)
authorteamnepal
permlinkre-leoumesh-sequence-and-series-part-2-20180410t061421965z
categorysteemstem
json_metadata{"tags":["steemstem"],"links":["https://discord.gg/DJEXXs"],"app":"steemit/0.1"}
created2018-04-10 06:14:21
last_update2018-04-10 06:14:21
depth1
children1
last_payout2018-04-17 06:14:21
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length125
author_reputation2,122,836,314,303
root_title"Sequence And Series - Part 2"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id49,257,137
net_rshares0
@leoumesh ·
Thank you🙂
Joined
properties (22)
authorleoumesh
permlinkre-teamnepal-re-leoumesh-sequence-and-series-part-2-20180410t120007625z
categorysteemstem
json_metadata{"tags":["steemstem"],"app":"steemit/0.1"}
created2018-04-10 12:00:12
last_update2018-04-10 12:00:12
depth2
children0
last_payout2018-04-17 12:00:12
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length17
author_reputation212,340,493,251,438
root_title"Sequence And Series - Part 2"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id49,297,416
net_rshares0