create account

[Math and Art #1] Harmonograph by mathsolver

View this thread on: hive.blogpeakd.comecency.com
· @mathsolver · (edited)
$0.07
[Math and Art #1] Harmonograph
Using Harmonograph, you can draw a lot of wonderful geometric shapes. Different frequency, amplitude and phase produce different geometrical shapes. Wonderful art!

<center> <img src = "https://i.imgsafe.org/24/241880cfa5.png"/> </center> 

<center> <___A Pentagon___> </center>

<center> <img src = "https://i.imgsafe.org/24/24bcaa924a.png"/></center>

<center> <___A Hexagon___> </center>

<center> <img src = "https://i.imgsafe.org/24/24caa7436d.png"/></center>

<center> <___A devil's Spine___></center>

Created via MATLAB

```
%% Setting variables
e = exp(1);
A = [1 1 1 1]'; % Amplitude
f = [4*e, pi, 4*e, pi]'; % frequency
p = [pi/2 pi/2 0 pi ]'; % phase
d = [0.02 0.002 0.02 0.002 ]'; % damping
t = 0 : 0.01 : 100; % time 
x = zeros(1, length(t)); % x coordinate
y = zeros(1, length(t)); % y coordinate

%% Plot
for i = 1 : 1 : length(t)
    x(i) = A(1) * sin(f(1) * t(i) + p(1)) * exp(-d(1) * t(i)) ...
    + A(2) * sin(f(2) * t(i) + p(2)) * exp(-d(2) * t(i));
    y(i) = A(3) * sin(f(3) * t(i) + p(3)) * exp(-d(3) * t(i)) ...
    + A(4) * sin(f(4) * t(i) + p(4)) * exp(-d(4) * t(i));
    z(i) = A(3) * sin(f(3) * t(i) + p(3)) * exp(-d(3) * t(i)) ...
    + A(4) * sin(f(4) * t(i) + p(4)) * exp(-d(4) * t(i));
end
plot(x, y)
```
👍  , , , , ,
properties (23)
authormathsolver
permlinkmath-and-art-1-harmonograph
categoryart
json_metadata{"tags":["art","design","computergraphics"],"image":["https://i.imgsafe.org/24/241880cfa5.png","https://i.imgsafe.org/24/24bcaa924a.png","https://i.imgsafe.org/24/24caa7436d.png"],"app":"steemit/0.1","format":"markdown"}
created2018-08-26 06:50:27
last_update2018-08-26 06:51:51
depth0
children0
last_payout2018-09-02 06:50:27
cashout_time1969-12-31 23:59:59
total_payout_value0.063 HBD
curator_payout_value0.008 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length1,237
author_reputation1,337,981,311,807
root_title"[Math and Art #1] Harmonograph"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id69,385,919
net_rshares49,727,128,227
author_curate_reward""
vote details (6)