create account

[Math Paradox #17] Covering Infinite Area using Finite Paint - Gabriel's Horn by mathsolver

View this thread on: hive.blogpeakd.comecency.com
· @mathsolver · (edited)
$0.25
[Math Paradox #17] Covering Infinite Area using Finite Paint - Gabriel's Horn
<center> <img src = "https://i.imgsafe.org/94/94d6f641ea.png"/></center>
[1]
# Paradox and Math 

## Be Careful!

Starting with this post, next 3 to 4 posts will be about paradoxes in Math. In fact, most of the topics that  are considered as mathematical paradox are not ___real___ paradoxes anymore; there exist numerous solutions and logical reasonings for those problems. However, it is worth to discuss about them. 

In this post, topic is about Gabriel's Horn, a mathematical object having finite volume but __infinite surface area__ . 

## 1. Torricelli's Discovery

In 1643, [Evangelista Torricelli](https://en.wikipedia.org/wiki/Evangelista_Torricelli) made his discovery of the strange nature of the acute hyperbolic solid, which we would now call the rectangular hyperboloid. It is generated by rotating the rectangular hyperbola 

<center> <img src="http://latex.codecogs.com/gif.latex?y&space;=&space;\frac{1}{x}&space;\&space;(x&space;>&space;1)" title="y = \frac{1}{x} \ (x > 0)" /> </center>

by <img src="http://latex.codecogs.com/gif.latex?360^{\circ}&space;(=2\pi&space;)" title="360^{\circ} (=2\pi )" align = "center"/> about the <img src="http://latex.codecogs.com/gif.latex?x" title="x" align = "center"/>-axis. 

<center> <img src = "https://i.imgsafe.org/92/9249c48d6c.png"/></center>

This is called [Gabriel's Horn](https://en.wikipedia.org/wiki/Gabriel%27s_Horn#cite_ref-1) or sometimes Torricelli's trumpet. He showed that this infinite solid has a finite volume. To today’s post-calculus eyes this single fact is not shocking but it does become rather more surprising when we realize that not only is its length infinite, but so is its surface area. We will use calculus and modern-day notation to prove both results

- the volume is finite and

- the surface area is infinite.

## 2. Finite Volume 

The volume of the solid formed by rotating the area between the curves of <img src="http://latex.codecogs.com/gif.latex?y=f(x)" title="y=f(x)" align = "center"/>,  the lines <img src="http://latex.codecogs.com/gif.latex?x = a" title="x" align = "center"/>, <img src="http://latex.codecogs.com/gif.latex?x = b" title="x" align = "center"/> and the <img src="http://latex.codecogs.com/gif.latex?x" title="x" />-axis is given by 

<center> <img src="http://latex.codecogs.com/gif.latex?V&space;=\pi&space;\int_{a}^{b}&space;f^2(x)dx" title="V =\pi \int_{a}^{b} f^2(x)dx" /> </center>

Since Gabriel's Horn is infinite solid, we should take <img src="http://latex.codecogs.com/gif.latex?b" title="b" /> to infinity, <img src="http://latex.codecogs.com/gif.latex?\infty" title="\infty" /> . The calculation gives 

<center><img src="http://latex.codecogs.com/gif.latex?\begin{align*}&space;V&space;&=&space;\lim_{b&space;\rightarrow&space;\infty}&space;\pi&space;\int_{1}^{b}&space;\frac{1}{x^2}dx&space;\\&space;&=&space;\lim_{b&space;\rightarrow&space;\infty}&space;\pi&space;\left[&space;-\frac{1}{x}&space;\right]_{1}^{b}&space;\\&space;&=&space;\lim_{b&space;\rightarrow&space;\infty}&space;\pi&space;\left(1&space;-&space;\frac{1}{b}&space;\right&space;)&space;=&space;\pi&space;\end{align*}" title="\begin{align*} V &= \lim_{b \rightarrow \infty} \pi \int_{1}^{b} \frac{1}{x^2}dx \\ &= \lim_{b \rightarrow \infty} \pi \left[ -\frac{1}{x} \right]_{1}^{b} \\ &= \lim_{b \rightarrow \infty} \pi \left(1 - \frac{1}{b} \right ) = \pi \end{align*}" /> </center>

which is clearly finite. 

## 3. Infinite Surface Area?!

The area of the solid formed by rotating the curve <img src="http://latex.codecogs.com/gif.latex?y&space;=&space;f(x)" title="y = f(x)" align = "center"/> along the <img src="http://latex.codecogs.com/gif.latex?x" title="x" />-axis from <img src="http://latex.codecogs.com/gif.latex?x=a" title="x=a" /> to <img src="http://latex.codecogs.com/gif.latex?b" title="b" /> is given by 

<center> <img src="http://latex.codecogs.com/gif.latex?A&space;=&space;2\pi&space;\int_{a}^{b}&space;f(x)&space;\sqrt{1&space;&plus;&space;(f'(x))^2}&space;dx" title="A = 2\pi \int_{a}^{b} f(x) \sqrt{1 + (f'(x))^2} dx" /> </center>

given that the function is __continuously differentiable__ on interval <img src="http://latex.codecogs.com/gif.latex?(a,b)" title="(a,b)" align = "center"/> . Luckily, out function <img src="http://latex.codecogs.com/gif.latex?y&space;=&space;1/x" title="y = 1/x" align = "center"/> is continuously differentiable in <img src="http://latex.codecogs.com/gif.latex?f'(x)&space;=&space;-1/x^2" title="f'(x) = -1/x^2" align = "center"/> . Since 

<center> <img src="http://latex.codecogs.com/gif.latex?\sqrt{1&space;&plus;&space;(f'(x))^2}&space;=&space;\sqrt{1&space;&plus;&space;\frac{1}{x^4}}&space;>&space;1" title="\sqrt{1 + (f'(x))^2} = \sqrt{1 + \frac{1}{x^4}} > 1" /> </center> 

for all <img src="http://latex.codecogs.com/gif.latex?x&space;\in&space;(1,&space;\infty)" title="x \in (1, \infty)" align = "center"/> , we have the inequality 

<center> <img src="http://latex.codecogs.com/gif.latex?\begin{align*}&space;2\pi&space;\int_{1}^{b}&space;f(x)\sqrt{1&plus;(f'(x))^2}&space;&>&space;2\pi&space;\int_{1}^{b}&space;f(x)&space;dx&space;\\&space;&=&space;2\pi&space;\int_{1}^{b}&space;\frac{1}{x}&space;dx&space;\\&space;&=&space;2&space;\pi&space;\ln&space;b&space;\end{align*}" title="\begin{align*} 2\pi \int_{1}^{b} f(x)\sqrt{1+(f'(x))^2} &> 2\pi \int_{1}^{b} f(x) dx \\ &= 2\pi \int_{1}^{b} \frac{1}{x} dx \\ &= 2 \pi \ln b \end{align*}" /> </center> 

where <img src="http://latex.codecogs.com/gif.latex?\ln" title="\ln" /> denotes natural logarithm. Now taking the limit both sides give 

<center> <img src="http://latex.codecogs.com/gif.latex?A&space;\geq&space;\lim_{b&space;\rightarrow&space;\infty}&space;2\pi&space;\ln&space;b&space;=&space;\infty" title="A \geq \lim_{b \rightarrow \infty} 2\pi \ln b = \infty" /> </center>

so that the surface area of Gabriel's horn is infinite. 

## 4. Painter's Paradox and Solution

So where is the paradox? Imagine the Gabriel's horn as a infinite cup. Then since volume is finite, we can fill the cup with finite amount, <img src="http://latex.codecogs.com/gif.latex?\pi" title="\pi" align = "center"/> liter of paint. But at the same time, the paint would not be sufficient to coat its inner surface; as the surface area of a cup is infinite! This ironic situation is called the painter's paradox. 

<center> <img src = "https://i.imgsafe.org/9f/9f8e5cfce1.png"/></center>


Is an infinite amount of paint really needed to paint the inner surface of the Gabriel's horn? Well, the answer is NO. The painter's paradox is __resolved by__ realizing that a finite amount of paint can in fact coat an infinite surface area, 

<center> <b> <i> It simply needs to get thinner at a fast enough rate. </i></b> </center>

Painting a surface means applying a coat of paint on the surface. The thickness of coat, is NOT uniform all over the surface, it should become thinner as the horn goes to infinity. So what is exactly a fast enough rate? Remember the area formula

<center> <img src="http://latex.codecogs.com/gif.latex?A(t)&space;=&space;2\pi&space;\int_{1}^{t}&space;f(x)\sqrt{1&space;&plus;&space;(f'(x))^2}&space;dx" title="A(t) = 2\pi \int_{1}^{t} f(x)\sqrt{1 + (f'(x))^2} dx" /> </center>

for the surface of revolution defined on interval <img src="http://latex.codecogs.com/gif.latex?x&space;\in&space;[1,&space;t]" title="x \in [1, t]" align = "center" /> ? By [Fundamental Theorem of Calculus](https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus), the rate of change is equal to 

<center> <img src="http://latex.codecogs.com/gif.latex?\begin{align*}&space;\frac{dA}{dt}&space;&=&space;2\pi&space;f(t)\sqrt{1&plus;(f'(t))^2}\\&space;&&space;=&space;\frac{2\pi}{t}&space;\sqrt{1&space;&plus;&space;\frac{1}{t^4}}&space;\\&space;&=&space;2\pi&space;\frac{\sqrt{t^4&space;&plus;&space;1}}{t^3}&space;\\&space;&\sim&space;\frac{2\pi}{t}&space;\end{align*}" title="\begin{align*} \frac{dA}{dt} &= 2\pi f(t)\sqrt{1+(f'(t))^2}\\ & = \frac{2\pi}{t} \sqrt{1 + \frac{1}{t^4}} \\ &= 2\pi \frac{\sqrt{t^4 + 1}}{t^3} \\ &\sim \frac{2\pi}{t} \end{align*}" /></center> 

Thus if we set the thickness of paint to be __inversely proportional__ to the length of the throat of the horn, we can actually coat the surface with finite amount of paint! However, in real world, this is impossible; since the thickness of coating can not go infinitesimally small due to physical limitations. 


## 5. What about the Converse?
[3]

Now a natural question arises. 

<center> <b> <i>  Does there exist a surface of revolution that has a finite surface area but an infinite volume? </i></b> </center>

The answer is unfortunately NO...&#128533;

Let <img src="http://latex.codecogs.com/gif.latex?f(x)" title="f(x)" align = "center"/>  be continuously differentiable function on <img src="http://latex.codecogs.com/gif.latex?[1,&space;\infty)" title="[1, \infty)" align = "center"/> . Let <img src="http://latex.codecogs.com/gif.latex?A,&space;V" title="A, V" align = "center"/> be the surface area and volume of solid of revolution over <img src="http://latex.codecogs.com/gif.latex?x" title="x" align = "center" />-axis respectively. If the surface area  <img src="http://latex.codecogs.com/gif.latex?A" title="A" /> is finite,

<center> <img src="http://latex.codecogs.com/gif.latex?\begin{align*}&space;\lim_{t&space;\rightarrow&space;\infty}&space;\left(&space;\sup_{x&space;\geq&space;t}&space;f^2(x)&space;\right&space;)&space;&=&space;\limsup_{t&space;\rightarrow&space;\infty}&space;\left(&space;f^2(1)&space;&plus;&space;\int_{1}^{t}&space;(f^2(x))'dx&space;\right)\&space;(\because&space;\text{F.T.C})&space;\\&space;&\leq&space;f^2(1)&space;&plus;&space;\int_{1}^{\infty}|(f^2(x))'|dx&space;\&space;(\because&space;(f^2)'&space;\leq&space;|(f^2)'|)&space;\\&space;&=&space;f^2(1)&space;&plus;&space;\int_1^{\infty}&space;2|f(x)||f'(x)|&space;dx\&space;(\because&space;(f^2)'&space;=&space;2ff'))\\&space;&\leq&space;f^2(1)&space;&plus;&space;\int_1^{\infty}&space;2|f(x)|&space;\sqrt{1&space;&plus;&space;(f'(x))^2}&space;dx\&space;(\because&space;|f'|&space;=&space;\sqrt{(f')^2}&space;\leq&space;\sqrt{1&space;&plus;&space;(f')^2})&space;\\&space;&=&space;f^2(1)&space;&plus;&space;\frac{A}{\pi}&space;\end{align*}" title="\begin{align*} \lim_{t \rightarrow \infty} \left( \sup_{x \geq t} f^2(x) \right ) &= \limsup_{t \rightarrow \infty} \left( f^2(1) + \int_{1}^{t} (f^2(x))'dx \right)\ (\because \text{F.T.C}) \\ &\leq f^2(1) + \int_{1}^{\infty}|(f^2(x))'|dx \ (\because (f^2)' \leq |(f^2)'|) \\ &= f^2(1) + \int_1^{\infty} 2|f(x)||f'(x)| dx\ (\because (f^2)' = 2ff'))\\ &\leq f^2(1) + \int_1^{\infty} 2|f(x)| \sqrt{1 + (f'(x))^2} dx\ (\because |f'| = \sqrt{(f')^2} \leq \sqrt{1 + (f')^2}) \\ &= f^2(1) + \frac{A}{\pi} \end{align*}" /></center>

Therefore, we can deduce that 
<center> <img src="http://latex.codecogs.com/gif.latex?M&space;=&space;\sup_{x&space;\ge&space;1}&space;|f(x)|" title="M = \sup_{x \ge 1} |f(x)|" /> </center> 
is finite, using the fact that <img src="http://latex.codecogs.com/gif.latex?f" title="f" align  = "center"/> is continuous over <img src="http://latex.codecogs.com/gif.latex?[1,&space;\infty)" title="[1, \infty)" align = "center"/> . Now, the volume:

<center> <img src="http://latex.codecogs.com/gif.latex?\begin{align*}&space;V&space;&=&space;\pi&space;\int_{1}^{\infty}&space;f^2(x)dx&space;\\&space;&=&space;\pi&space;\int_{1}^{\infty}&space;f(x)\cdot&space;f(x)dx&space;\\&space;&\leq&space;M\pi&space;\int_1^{\infty}&space;f(x)dx&space;\\&space;&=&space;M\pi&space;\int_1^{\infty}&space;f(x)&space;\cdot&space;1&space;dx&space;\\&space;&\leq&space;M\pi&space;\int_1^{\infty}&space;f(x)&space;\sqrt{1&space;&plus;&space;(f'(x))^2}&space;dx&space;=&space;\frac{MA}{2}&space;\end{align*}" title="\begin{align*} V &= \pi \int_{1}^{\infty} f^2(x)dx \\ &= \pi \int_{1}^{\infty} f(x)\cdot f(x)dx \\ &\leq M\pi \int_1^{\infty} f(x)dx \\ &= M\pi \int_1^{\infty} f(x) \cdot 1 dx \\ &\leq M\pi \int_1^{\infty} f(x) \sqrt{1 + (f'(x))^2} dx = \frac{MA}{2} \end{align*}" /> </center>

should necessarily be finite! 

Actually, the converse also does not holds for arbitrary rectifiable solids, because of [isoperimetric inequality](https://en.wikipedia.org/wiki/Isoperimetric_inequality) in 3D space but proving the generalized fact needs more mathematical concepts. 

## 6. Conclusion
[4]
The painter's paradox, arises when our intuition of painting deviates from the mathematical concept of area. Also the concept of infinity should be treated rigorously, not just using simple simulations using real world applications (like painting) . 

## 7. Citations

[1] [Image Source Link](https://brilliant.org/wiki/gabriels-horn/)

[3] [Gabriel's Horn Explained Wiki Article](https://en.wikipedia.org/wiki/Gabriel%27s_Horn#cite_ref-1)

[4] [On Painter’s Paradox: Contextual and Mathematical Approaches to Infinity](https://link.springer.com/article/10.1007/s40753-015-0004-z) (Article)

---

All other images are self-made using Mathematica.
👍  , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
properties (23)
authormathsolver
permlinkmath-paradox-17-covering-infinite-area-using-finite-amount-of-paint-gabriel-s-horn
categorymath
json_metadata"{"tags":["math","mathematics","science","steemstem","education"],"image":["https://i.imgsafe.org/94/94d6f641ea.png","http://latex.codecogs.com/gif.latex?y&space;=&space;\\frac{1}{x}&space;\\&space;(x&space;>&space;1)","http://latex.codecogs.com/gif.latex?360^{\\circ}&space;(=2\\pi&space;)","http://latex.codecogs.com/gif.latex?x","https://i.imgsafe.org/92/9249c48d6c.png","http://latex.codecogs.com/gif.latex?y=f(x)","http://latex.codecogs.com/gif.latex?x = a","http://latex.codecogs.com/gif.latex?x = b","http://latex.codecogs.com/gif.latex?V&space;=\\pi&space;\\int_{a}^{b}&space;f^2(x)dx","http://latex.codecogs.com/gif.latex?b","http://latex.codecogs.com/gif.latex?\\infty","http://latex.codecogs.com/gif.latex?\\begin{align*}&space;V&space;&=&space;\\lim_{b&space;\\rightarrow&space;\\infty}&space;\\pi&space;\\int_{1}^{b}&space;\\frac{1}{x^2}dx&space;\\\\&space;&=&space;\\lim_{b&space;\\rightarrow&space;\\infty}&space;\\pi&space;\\left[&space;-\\frac{1}{x}&space;\\right]_{1}^{b}&space;\\\\&space;&=&space;\\lim_{b&space;\\rightarrow&space;\\infty}&space;\\pi&space;\\left(1&space;-&space;\\frac{1}{b}&space;\\right&space;)&space;=&space;\\pi&space;\\end{align*}","http://latex.codecogs.com/gif.latex?y&space;=&space;f(x)","http://latex.codecogs.com/gif.latex?x=a","http://latex.codecogs.com/gif.latex?A&space;=&space;2\\pi&space;\\int_{a}^{b}&space;f(x)&space;\\sqrt{1&space;&plus;&space;(f'(x))^2}&space;dx","http://latex.codecogs.com/gif.latex?(a,b)","http://latex.codecogs.com/gif.latex?y&space;=&space;1/x","http://latex.codecogs.com/gif.latex?f'(x)&space;=&space;-1/x^2","http://latex.codecogs.com/gif.latex?\\sqrt{1&space;&plus;&space;(f'(x))^2}&space;=&space;\\sqrt{1&space;&plus;&space;\\frac{1}{x^4}}&space;>&space;1","http://latex.codecogs.com/gif.latex?x&space;\\in&space;(1,&space;\\infty)","http://latex.codecogs.com/gif.latex?\\begin{align*}&space;2\\pi&space;\\int_{1}^{b}&space;f(x)\\sqrt{1&plus;(f'(x))^2}&space;&>&space;2\\pi&space;\\int_{1}^{b}&space;f(x)&space;dx&space;\\\\&space;&=&space;2\\pi&space;\\int_{1}^{b}&space;\\frac{1}{x}&space;dx&space;\\\\&space;&=&space;2&space;\\pi&space;\\ln&space;b&space;\\end{align*}","http://latex.codecogs.com/gif.latex?\\ln","http://latex.codecogs.com/gif.latex?A&space;\\geq&space;\\lim_{b&space;\\rightarrow&space;\\infty}&space;2\\pi&space;\\ln&space;b&space;=&space;\\infty","http://latex.codecogs.com/gif.latex?\\pi","https://i.imgsafe.org/9f/9f8e5cfce1.png","http://latex.codecogs.com/gif.latex?A(t)&space;=&space;2\\pi&space;\\int_{1}^{t}&space;f(x)\\sqrt{1&space;&plus;&space;(f'(x))^2}&space;dx","http://latex.codecogs.com/gif.latex?x&space;\\in&space;[1,&space;t]","http://latex.codecogs.com/gif.latex?\\begin{align*}&space;\\frac{dA}{dt}&space;&=&space;2\\pi&space;f(t)\\sqrt{1&plus;(f'(t))^2}\\\\&space;&&space;=&space;\\frac{2\\pi}{t}&space;\\sqrt{1&space;&plus;&space;\\frac{1}{t^4}}&space;\\\\&space;&=&space;2\\pi&space;\\frac{\\sqrt{t^4&space;&plus;&space;1}}{t^3}&space;\\\\&space;&\\sim&space;\\frac{2\\pi}{t}&space;\\end{align*}","http://latex.codecogs.com/gif.latex?f(x)","http://latex.codecogs.com/gif.latex?[1,&space;\\infty)","http://latex.codecogs.com/gif.latex?A,&space;V","http://latex.codecogs.com/gif.latex?A","http://latex.codecogs.com/gif.latex?\\begin{align*}&space;\\lim_{t&space;\\rightarrow&space;\\infty}&space;\\left(&space;\\sup_{x&space;\\geq&space;t}&space;f^2(x)&space;\\right&space;)&space;&=&space;\\limsup_{t&space;\\rightarrow&space;\\infty}&space;\\left(&space;f^2(1)&space;&plus;&space;\\int_{1}^{t}&space;(f^2(x))'dx&space;\\right)\\&space;(\\because&space;\\text{F.T.C})&space;\\\\&space;&\\leq&space;f^2(1)&space;&plus;&space;\\int_{1}^{\\infty}|(f^2(x))'|dx&space;\\&space;(\\because&space;(f^2)'&space;\\leq&space;|(f^2)'|)&space;\\\\&space;&=&space;f^2(1)&space;&plus;&space;\\int_1^{\\infty}&space;2|f(x)||f'(x)|&space;dx\\&space;(\\because&space;(f^2)'&space;=&space;2ff'))\\\\&space;&\\leq&space;f^2(1)&space;&plus;&space;\\int_1^{\\infty}&space;2|f(x)|&space;\\sqrt{1&space;&plus;&space;(f'(x))^2}&space;dx\\&space;(\\because&space;|f'|&space;=&space;\\sqrt{(f')^2}&space;\\leq&space;\\sqrt{1&space;&plus;&space;(f')^2})&space;\\\\&space;&=&space;f^2(1)&space;&plus;&space;\\frac{A}{\\pi}&space;\\end{align*}","http://latex.codecogs.com/gif.latex?M&space;=&space;\\sup_{x&space;\\ge&space;1}&space;|f(x)|","http://latex.codecogs.com/gif.latex?f","http://latex.codecogs.com/gif.latex?\\begin{align*}&space;V&space;&=&space;\\pi&space;\\int_{1}^{\\infty}&space;f^2(x)dx&space;\\\\&space;&=&space;\\pi&space;\\int_{1}^{\\infty}&space;f(x)\\cdot&space;f(x)dx&space;\\\\&space;&\\leq&space;M\\pi&space;\\int_1^{\\infty}&space;f(x)dx&space;\\\\&space;&=&space;M\\pi&space;\\int_1^{\\infty}&space;f(x)&space;\\cdot&space;1&space;dx&space;\\\\&space;&\\leq&space;M\\pi&space;\\int_1^{\\infty}&space;f(x)&space;\\sqrt{1&space;&plus;&space;(f'(x))^2}&space;dx&space;=&space;\\frac{MA}{2}&space;\\end{align*}"],"links":["https://en.wikipedia.org/wiki/Evangelista_Torricelli","https://en.wikipedia.org/wiki/Gabriel%27s_Horn#cite_ref-1","https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus","https://en.wikipedia.org/wiki/Isoperimetric_inequality","https://brilliant.org/wiki/gabriels-horn/","https://link.springer.com/article/10.1007/s40753-015-0004-z"],"app":"steemit/0.1","format":"markdown"}"
created2018-08-31 14:29:00
last_update2018-09-01 02:27:18
depth0
children6
last_payout2018-09-07 14:29:00
cashout_time1969-12-31 23:59:59
total_payout_value0.224 HBD
curator_payout_value0.028 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length12,990
author_reputation1,337,981,311,807
root_title"[Math Paradox #17] Covering Infinite Area using Finite Paint - Gabriel's Horn"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id69,897,612
net_rshares195,875,236,864
author_curate_reward""
vote details (57)
@mathowl · (edited)
I remember this from my calculus course :D

The image [2]  does not seem to have an online copy-right license attached to it. Please only use images for which there is a copy-right license for reuse. The link in the post has to link to the corresponding license. Correct usage of copy-right  is a requirement for steemstem curation.

https://steemitimages.com/0x0/https://cdn.steemitimages.com/DQmecfRxRo8n2qbmdJcQi5L8YqiwnX7bfQJAgqwNSwmbK23/DQmWPdXSwgcwQV5uuTRybUZH3vUZ6pTw4ESZmDT7Ey7DXbW_1680x8400.png
properties (22)
authormathowl
permlinkre-mathsolver-math-paradox-17-covering-infinite-area-using-finite-amount-of-paint-gabriel-s-horn-20180901t001938718z
categorymath
json_metadata{"tags":["math"],"image":["https://steemitimages.com/0x0/https://cdn.steemitimages.com/DQmecfRxRo8n2qbmdJcQi5L8YqiwnX7bfQJAgqwNSwmbK23/DQmWPdXSwgcwQV5uuTRybUZH3vUZ6pTw4ESZmDT7Ey7DXbW_1680x8400.png"],"app":"steemit/0.1"}
created2018-09-01 00:19:36
last_update2018-09-01 00:53:54
depth1
children2
last_payout2018-09-08 00:19:36
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length503
author_reputation44,993,635,814,620
root_title"[Math Paradox #17] Covering Infinite Area using Finite Paint - Gabriel's Horn"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id69,948,253
net_rshares0
@mathsolver ·
$0.04
I just edited the image [2] with my own Mathematica plot. Thanks for your advice and I always appreciate  SteemStem curation!
👍  ,
properties (23)
authormathsolver
permlinkre-mathowl-re-mathsolver-math-paradox-17-covering-infinite-area-using-finite-amount-of-paint-gabriel-s-horn-20180901t022853434z
categorymath
json_metadata{"tags":["math"],"app":"steemit/0.1"}
created2018-09-01 02:28:51
last_update2018-09-01 02:28:51
depth2
children1
last_payout2018-09-08 02:28:51
cashout_time1969-12-31 23:59:59
total_payout_value0.033 HBD
curator_payout_value0.010 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length125
author_reputation1,337,981,311,807
root_title"[Math Paradox #17] Covering Infinite Area using Finite Paint - Gabriel's Horn"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id69,954,979
net_rshares35,283,791,955
author_curate_reward""
vote details (2)
@mathowl ·
$0.03
Good job
👍  ,
properties (23)
authormathowl
permlinkre-mathsolver-re-mathowl-re-mathsolver-math-paradox-17-covering-infinite-area-using-finite-amount-of-paint-gabriel-s-horn-20180901t105719372z
categorymath
json_metadata{"tags":["math"],"app":"steemit/0.1"}
created2018-09-01 10:57:15
last_update2018-09-01 10:57:15
depth3
children0
last_payout2018-09-08 10:57:15
cashout_time1969-12-31 23:59:59
total_payout_value0.022 HBD
curator_payout_value0.004 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length8
author_reputation44,993,635,814,620
root_title"[Math Paradox #17] Covering Infinite Area using Finite Paint - Gabriel's Horn"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id69,987,807
net_rshares21,877,089,960
author_curate_reward""
vote details (2)
@steemcleaners ·
$0.99
[Source](https://books.google.nl/books?id=lQ0N9H793GQC&pg=PA83&dq=In+1643,+Evangelista+Torricelli+made+his+discovery+of+the+strange+nature+of+the+acute+hyperbolic+solid,+which+we+would+now+call+the+rectangular+hyperboloid.+It+is+generated+by+rotating+the+rectangular+hyperbola&hl=en&sa=X&ved=0ahUKEwiakrLon53dAhUIUlAKHf9oDvwQ6AEIKTAA#v=onepage&q&f=false)
[Plagiarism](http://www.plagiarism.org/plagiarism-101/what-is-plagiarism/) is the copying & pasting of others work without giving credit to the original author or artist. Plagiarized posts are considered spam. 

Spam is discouraged by the community, and may result in action from the [cheetah bot](https://steemit.com/faq.html#What_is__cheetah).

[More information and tips on sharing content.](https://steemcleaners.org/copy-paste-plagiarism/)

If you believe this comment is in error, please contact us in [#disputes on Discord](https://discord.gg/YR2Wy5A)
👍  , , , ,
properties (23)
authorsteemcleaners
permlinkre-mathsolver-math-paradox-17-covering-infinite-area-using-finite-amount-of-paint-gabriel-s-horn-20180903t024502905z
categorymath
json_metadata{"app":"steemcleaners/0.3","format":"markdown+html","community":"steemcleaners"}
created2018-09-03 02:45:03
last_update2018-09-03 02:45:03
depth1
children0
last_payout2018-09-10 02:45:03
cashout_time1969-12-31 23:59:59
total_payout_value0.745 HBD
curator_payout_value0.241 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length919
author_reputation2,789,224,428,782,668
root_title"[Math Paradox #17] Covering Infinite Area using Finite Paint - Gabriel's Horn"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id70,143,235
net_rshares808,011,768,473
author_curate_reward""
vote details (5)
@steemstem ·
post_voted_by
<center> https://cdn.discordapp.com/attachments/354723995037466624/463380522928963599/steemSTEM.png</center> <br><br> This post has been voted on by the steemstem curation team and voting trail.  <br> <br>There is more to SteemSTEM than just writing posts, check <a href="https://steemit.com/steemstem/@steemstem/being-a-member-of-the-steemstem-community">here</a> for some more tips on being a community member. You can also join our discord <a href="https://discord.gg/BPARaqn">here</a> to get to know the rest of the community!
properties (22)
authorsteemstem
permlinkre-math-paradox-17-covering-infinite-area-using-finite-amount-of-paint-gabriel-s-horn-20180831t211320
categorymath
json_metadata""
created2018-08-31 21:13:21
last_update2018-08-31 21:13:21
depth1
children0
last_payout2018-09-07 21:13:21
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length530
author_reputation262,017,435,115,313
root_title"[Math Paradox #17] Covering Infinite Area using Finite Paint - Gabriel's Horn"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id69,938,453
net_rshares0
@utopian-io · (edited)
Unfortunately, your contribution's vote was removed,as the trailing community vote was removed.

For any inquiries, contact our support team at https://support.utopian.io/
properties (22)
authorutopian-io
permlink20180901t014732172z
categorymath
json_metadata{"tags":["utopian.tip"],"app":"utopian-io"}
created2018-09-01 01:47:33
last_update2018-09-03 19:58:33
depth1
children0
last_payout2018-09-08 01:47:33
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length171
author_reputation152,955,367,999,756
root_title"[Math Paradox #17] Covering Infinite Area using Finite Paint - Gabriel's Horn"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id69,952,823
net_rshares0