create account

[Math Talk #24] Integer Division Algorithm by mathsolver

View this thread on: hive.blogpeakd.comecency.com
· @mathsolver ·
$1.05
[Math Talk #24] Integer Division Algorithm
<center> <img src = "https://i.imgsafe.org/52/52d2d0e4b0.jpeg" /></center>

([Image Source Link](https://pixabay.com/en/athletic-field-ground-lane-lines-1867053/), CC0 license)

We all know how to obtain quotients and remainder using the division algorithm for integers. But why is it always possible to have a __unique pair__ of quotient and remainder? This stems from the well ordering principle. 

## Well Ordering Principle

The precise proof of existence and uniqueness of quotient and remainder in the division algorithm heavily relies on well ordering principle. Well ordering principle comes from axiomatic set theory, so to make long story short, it states that any non-empty subset of natural numbers (= non-negative integers) contains a least element. 

---
___Well Ordering Principle.___ Every nonempty subset <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;S&space;\subseteq&space;\mathbb{N}" title="S \subseteq \mathbb{N}" align = "center"/>  contains an integer <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;a&space;\in&space;S" title="a \in S" /> such that <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;a&space;\leq&space;b" title="a \leq b" /> for all <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;b" title="b" />'s  belonging to <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;S" title="S" /> . 

---

In fact, there are several ways to construct Natural numbers. If you follow [Peano arithmetic](https://en.wikipedia.org/wiki/Peano_axioms), then Well ordering principle is a direct consequence of principle of mathematical induction. On the other hand, if you follow [axiomatic set  theory](https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory); natural numbers are the smallest inductive set, then well ordering principle becomes trivial by construction itself.  In either case, it is a fundamental fact, so do not try to find counterexamples...

## Well known Division algorithm

The integer division algorithm can be summarized as follows. 

---
___Integer Division Algorithm.___ Given two integers <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;a,b" title="a,b" align = "center"/>, with <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;b \neq 0" title="q=-9,\ r=1" align ="center"/>, there exist __unique integers__ <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;q" title="q" align = "center"/> and <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;r" title="r" /> satisfying 

- <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;a&space;=&space;qb&space;&plus;&space;r" title="a = qb + r" align = "center"/> with 

- <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;0&space;\leq&space;r&space;<&space;|b|" title="0 \leq r < |b|" align = "center"/>

- We call <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;q" title="q" align = "center"/> as the quotient, <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;r" title="r" /> as the remainder. 

---

For example, for two integers <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;37" title="37" /> and <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;8" title="8" />, we have relation 

<center> <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;37=4\times&space;8&plus;5" title="37=4\times 8+5" /> </center>

so that <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;q=4,&space;r=5" title="q=4, r=5" align = "center"/> . Another example involving negative integers would be <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;a=-37,&space;b=-4" title="a=-37, b=-4" align = 'center'/>, then the relation becomes 

<center> <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;-37=10&space;\times&space;(-4)&space;&plus;&space;3" title="-37=(-9) \times (-4) + 1" /> </center>

so that <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;q=10,\&space;r=3" title="q=-9,\ r=1" align = "center"/> . We can clearly  see that in integer division algorithm, quotient and remainder is unique. 

## Why do they exist?

Well ordering principle can give us a lot of help in proving existence. For given two integers <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;a,b" title="a,b" align = "center"/> with <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;b\neq0" title="q=-9,\ r=1" align = "center"/>, construct a subset of natural numbers 

<center> <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;S=&space;\left\{&space;a&space;-&space;xb&space;:&space;x&space;\text{&space;is&space;an&space;integer&space;and&space;}&space;a-xb&space;\geq&space;0&space;\right\}" title="S= \left\{ a - xb : x \text{ is an integer and } a-xb \geq 0 \right\}" /> </center>

In order to use well ordering principle, we must show that <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;S" title="S" /> is nonempty. If <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;b" title="b" /> is positive, we need some negative integer <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;x" title="x" /> satisfying <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;a-xb&space;\geq&space;0" title="a-xb \geq 0" align = "center"/> . A good guess would be <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;-|a|" title="-|a|" align = "center"/>. In fact, 

<center> <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;a-(-|a|)b&space;=&space;a&space;&plus;&space;|a|b&space;\geq&space;a&space;&plus;&space;|a|&space;\geq&space;0" title="a-(-|a|)b = a + |a|b \geq a + |a| \geq 0" /> </center>

makes <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;S" title="S" /> nonempty. Also, if  <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;b" title="b" /> is negative, <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;|a|" title="|a|" align = "center"/> will give us a desired result. Either case S is nonempty, so the set <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;S" title="S" /> contains a smllest element, namely <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;r" title="r" /> using well ordering principle. By definition of <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;S" title="S" /> , there exist an integer <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;q" title="q" align = "center"/> such that 

<center> <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;a-qb&space;=&space;r&space;\iff&space;a&space;=&space;qb&space;&plus;&space;r" title="a-qb = r \iff a = qb + r" />  </center>

Are we done? Not yet. We must show that <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;r&space;<&space;|b|" title="r < |b|" align = "center"/> . Here we use the method of contradiction assuming <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;r&space;\geq&space;|b|" title="r \geq |b|" align = "center"/>. 

- Assume <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;b&space;>&space;0" title="b > 0" />. Then <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;a&space;-&space;(q&plus;1)b&space;=&space;r&space;-&space;b&space;\geq&space;0" title="a - (q+1)b = r - b \geq 0" align = "center"/> so that <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;r-b&space;\in&space;S" title="r-b \in S" />. However, this contradicts to the choice of <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;r" title="r" /> as the smallest element of <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;S" title="S" /> . 

- Assume <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;b&space;<&space;0" title="b < 0" />. Then 

<center> <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;a&space;-&space;(q-1)b&space;=&space;r&plus;b&space;\geq&space;|b|&plus;b&space;\geq&space;0" title="a - (q-1)b = r+b \geq |b|+b \geq 0" /> </center>

so that <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;r&space;&plus;&space;b&space;\in&space;S" title="r + b \in S" />. Again this leads to contradiction. Thus <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;r&space;<&space;|b|" title="r < |b|" align = "center"/> .  

## Why are they unique?

Technically, showing uniqueness is easy. Suppose there are two different pairs of quotient and remiander. 

<center> <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;a&space;=&space;q_1b&space;&plus;&space;r_1&space;=&space;q_2b&space;&plus;&space;r_2" title="a = q_1b + r_1 = q_2b + r_2" /> </center>

. Then 

<center> <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;r_1&space;-&space;r_2&space;=&space;b(q_2&space;-&space;q_1)&space;\implies&space;|r_1&space;-&space;r_2|&space;=&space;|b|&space;\cdot&space;|q_2&space;-&space;q_1|" title="r_1 - r_2 = b(q_2 - q_1) \implies |r_1 - r_2| = |b| \cdot |q_2 - q_1|" /> </center>

Since both <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;r_1,&space;r_2" title="r_1, r_2" align = "center" /> satisfy <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;0&space;\leq&space;r_i&space;<&space;|b|" title="0 \leq r_i < |b|" align = "center"/>, the difference should be less than <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;|b|" title="|b|" align = "center"/> . Therefore, <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;|r_1&space;-&space;r_2|&space;=&space;|b|&space;\cdot&space;|q_1&space;-&space;q_2|&space;<&space;|b|" title="|r_1 - r_2| = |b| \cdot |q_1 - q_2| < |b|" align = "center"/> leads to 

<center> <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;|q_1&space;-&space;q_2|&space;<&space;1" title="|q_1 - q_2| < 1" /> </center>

Because <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;q_1&space;-&space;q_2" title="q_1 - q_2" align ="center"/> is an integer, the only possibility is <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;q_1&space;-&space;q_2&space;=&space;0" title="q_1 - q_2 = 0" align = "center"/> , whence <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;q_1&space;=&space;q_2" title="q_1 = q_2" align  = "center"/> . From this, we get <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;r_1&space;=&space;r_2" title="r_1 = r_2" align = "center"/>, ending the proof of uniqueness. 

## Extension to any real number

The division algorithm of integers can be easily extended to division involving two real numbers. For two real numbers <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;x,&space;y" title="x, y" align = "center"/> with <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;y&space;\neq&space;0" title="y \neq 0" align = "center"/> , there always exist a quotient <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;q" title="q" align = "center"/> and remainder <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;r" title="r" /> such that 

- <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;x=&space;qy&space;&plus;&space;r" title="x= qy + r" align = "center"/>

- <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;0&space;\leq&space;r&space;<&space;|y|" title="0 \leq r < |y|" align = "center"/>

Note that quotient is an integer but remainder isn't. 

---

If we fix a nonzero real number <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;y" title="y" align = "center"/> as 1, then we can partition the set of real numbers by equivalence classes 

<center> <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;[x]&space;=&space;\left\{&space;s&space;\in&space;\mathbb{R}&space;:&space;x&space;\text{&space;and&space;}s&space;\text{&space;have&space;same&space;remainder}&space;\right\}" title="[x] = \left\{ s \in \mathbb{R} : x \text{ and }s \text{ have same remainder} \right\}" /> </center>

This is equivalent to saying that any equivalence class has 1-1 correspondance with unit interval <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;[0,&space;1)" title="[0, 1)" align = "center"/> by 

<center> <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;[x]&space;\mapsto&space;r_x,\&space;(r_x&space;\text{&space;is&space;remainder&space;when&space;divided&space;by&space;1})" title="[x] \mapsto t,\ (t \text{ is remainder when divided by 1})" /> </center>

If you are familiar with quotient groups, what we've constructed is a quotient group 

<center> <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;\mathbb{R}/\mathbb{Z}" title="\mathbb{R}/\mathbb{Z}" /> </center>

. With a continuous function <img src="http://latex.codecogs.com/gif.latex?\dpi{120}&space;f(r_x)&space;=&space;(\cos(2\pi&space;r_x),&space;\sin(2\pi&space;r_x))" title="f(r_x) = (\cos(2\pi r_x), \sin(2\pi r_x))" align = "center"/> defined on unit interval [0, 1), this group can be viewed as a __unit circle__ on a 2D plane. 

<center> <img src = "https://i.imgsafe.org/53/53023c6eb2.png" /></center>


## Conclusion

- Well Ordering principle helps us to prove the existence of quotient and remainder in integer division algorithm.

- In fact, quotient and remainder are unique.

- We can extend this division algorithm to real numbers. Furthermore, each equivalence class of remainder corresponds to unique point in unit interval [0, 1). 

- This can be viewed as another way of representing unit circle. 

## Notable sources

- Elementary number theory - David M.Burton Chapter 2, Section 1.

---

<center> <img src = "https://media.discordapp.net/attachments/453577536413237258/477155905461551111/logo.png?width=270&height=270"/></center>

<center> <img src = "https://steemitimages.com/DQmWy4Kn1oiix2iq2Wdfc6pZ81sCq7UkfDv1U3FsNxkYao6/gear2.gif"/></center>
πŸ‘  , , , , , , , , , , , , , , , , , , , ,
properties (23)
authormathsolver
permlinkmath-talk-24-integer-division-algorithm
categorymath
json_metadata"{"tags":["math","mathematics","science","steemstem","steemiteducation"],"image":["https://i.imgsafe.org/52/52d2d0e4b0.jpeg","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;S&space;\\subseteq&space;\\mathbb{N}","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;a&space;\\in&space;S","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;a&space;\\leq&space;b","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;b","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;S","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;a,b","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;b \\neq 0","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;q","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;r","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;a&space;=&space;qb&space;&plus;&space;r","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;0&space;\\leq&space;r&space;<&space;|b|","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;37","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;8","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;37=4\\times&space;8&plus;5","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;q=4,&space;r=5","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;a=-37,&space;b=-4","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;-37=10&space;\\times&space;(-4)&space;&plus;&space;3","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;q=10,\\&space;r=3","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;b\\neq0","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;S=&space;\\left\\{&space;a&space;-&space;xb&space;:&space;x&space;\\text{&space;is&space;an&space;integer&space;and&space;}&space;a-xb&space;\\geq&space;0&space;\\right\\}","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;x","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;a-xb&space;\\geq&space;0","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;-|a|","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;a-(-|a|)b&space;=&space;a&space;&plus;&space;|a|b&space;\\geq&space;a&space;&plus;&space;|a|&space;\\geq&space;0","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;|a|","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;a-qb&space;=&space;r&space;\\iff&space;a&space;=&space;qb&space;&plus;&space;r","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;r&space;<&space;|b|","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;r&space;\\geq&space;|b|","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;b&space;>&space;0","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;a&space;-&space;(q&plus;1)b&space;=&space;r&space;-&space;b&space;\\geq&space;0","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;r-b&space;\\in&space;S","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;b&space;<&space;0","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;a&space;-&space;(q-1)b&space;=&space;r&plus;b&space;\\geq&space;|b|&plus;b&space;\\geq&space;0","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;r&space;&plus;&space;b&space;\\in&space;S","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;a&space;=&space;q_1b&space;&plus;&space;r_1&space;=&space;q_2b&space;&plus;&space;r_2","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;r_1&space;-&space;r_2&space;=&space;b(q_2&space;-&space;q_1)&space;\\implies&space;|r_1&space;-&space;r_2|&space;=&space;|b|&space;\\cdot&space;|q_2&space;-&space;q_1|","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;r_1,&space;r_2","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;0&space;\\leq&space;r_i&space;<&space;|b|","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;|b|","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;|r_1&space;-&space;r_2|&space;=&space;|b|&space;\\cdot&space;|q_1&space;-&space;q_2|&space;<&space;|b|","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;|q_1&space;-&space;q_2|&space;<&space;1","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;q_1&space;-&space;q_2","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;q_1&space;-&space;q_2&space;=&space;0","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;q_1&space;=&space;q_2","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;r_1&space;=&space;r_2","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;x,&space;y","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;y&space;\\neq&space;0","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;x=&space;qy&space;&plus;&space;r","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;0&space;\\leq&space;r&space;<&space;|y|","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;y","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;[x]&space;=&space;\\left\\{&space;s&space;\\in&space;\\mathbb{R}&space;:&space;x&space;\\text{&space;and&space;}s&space;\\text{&space;have&space;same&space;remainder}&space;\\right\\}","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;[0,&space;1)","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;[x]&space;\\mapsto&space;r_x,\\&space;(r_x&space;\\text{&space;is&space;remainder&space;when&space;divided&space;by&space;1})","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;\\mathbb{R}/\\mathbb{Z}","http://latex.codecogs.com/gif.latex?\\dpi{120}&space;f(r_x)&space;=&space;(\\cos(2\\pi&space;r_x),&space;\\sin(2\\pi&space;r_x))","https://i.imgsafe.org/53/53023c6eb2.png","https://media.discordapp.net/attachments/453577536413237258/477155905461551111/logo.png?width=270&height=270","https://steemitimages.com/DQmWy4Kn1oiix2iq2Wdfc6pZ81sCq7UkfDv1U3FsNxkYao6/gear2.gif"],"links":["https://pixabay.com/en/athletic-field-ground-lane-lines-1867053/","https://en.wikipedia.org/wiki/Peano_axioms","https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory"],"app":"steemit/0.1","format":"markdown"}"
created2018-09-09 14:47:03
last_update2018-09-09 14:47:03
depth0
children7
last_payout2018-09-16 14:47:03
cashout_time1969-12-31 23:59:59
total_payout_value0.827 HBD
curator_payout_value0.227 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length13,849
author_reputation1,337,981,311,807
root_title"[Math Talk #24] Integer Division Algorithm"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd0
post_id70,795,155
net_rshares989,478,525,554
author_curate_reward""
vote details (21)
@amansharma555 ·
Wow great information, thanks for sharing..
properties (22)
authoramansharma555
permlinkre-mathsolver-math-talk-24-integer-division-algorithm-20180909t160556842z
categorymath
json_metadata{"tags":["math"],"app":"steemit/0.1"}
created2018-09-09 16:06:06
last_update2018-09-09 16:06:06
depth1
children1
last_payout2018-09-16 16:06:06
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length43
author_reputation273,717,128,923
root_title"[Math Talk #24] Integer Division Algorithm"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id70,801,876
net_rshares0
@mathsolver ·
Thanks man.
properties (22)
authormathsolver
permlinkre-amansharma555-re-mathsolver-math-talk-24-integer-division-algorithm-20180910t022640091z
categorymath
json_metadata{"tags":["math"],"app":"steemit/0.1"}
created2018-09-10 02:26:39
last_update2018-09-10 02:26:39
depth2
children0
last_payout2018-09-17 02:26:39
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length11
author_reputation1,337,981,311,807
root_title"[Math Talk #24] Integer Division Algorithm"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd0
post_id70,840,259
net_rshares0
@minnowsupport ·
<p>Congratulations!  This post has been upvoted from the communal account, @minnowsupport, by Mathsolver from the Minnow Support Project. It's a witness project run by aggroed, ausbitbank, teamsteem, someguy123, neoxian, followbtcnews, and netuoso. The goal is to help Steemit grow by supporting Minnows.  Please find us at the <a href="https://discord.gg/HYj4yvw"> Peace, Abundance, and Liberty Network (PALnet) Discord Channel</a>.  It's a completely public and open space to all members of the Steemit community who voluntarily choose to be there.</p> <p>If you would like to delegate to the Minnow Support Project you can do so by clicking on the following links: <a href="https://v2.steemconnect.com/sign/delegateVestingShares?delegator=&amp;delegatee=minnowsupport&amp;vesting_shares=102530.639667%20VESTS">50SP</a>, <a href="https://v2.steemconnect.com/sign/delegateVestingShares?delegator=&amp;delegatee=minnowsupport&amp;vesting_shares=205303.639667%20VESTS">100SP</a>, <a href="https://v2.steemconnect.com/sign/delegateVestingShares?delegator=&amp;delegatee=minnowsupport&amp;vesting_shares=514303.639667%20VESTS">250SP</a>, <a href="https://v2.steemconnect.com/sign/delegateVestingShares?delegator=&amp;delegatee=minnowsupport&amp;vesting_shares=1025303.639667%20VESTS">500SP</a>, <a href="https://v2.steemconnect.com/sign/delegateVestingShares?delegator=&amp;delegatee=minnowsupport&amp;vesting_shares=2053030.639667%20VESTS">1000SP</a>, <a href="https://v2.steemconnect.com/sign/delegateVestingShares?delegator=&amp;delegatee=minnowsupport&amp;vesting_shares=10253030.639667%20VESTS">5000SP</a>. <br><strong>Be sure to leave at least 50SP undelegated on your account.</strong></p>
properties (22)
authorminnowsupport
permlinkre-math-talk-24-integer-division-algorithm-20180909t155039z
categorymath
json_metadata"{"app": "beem/0.19.50"}"
created2018-09-09 15:50:39
last_update2018-09-09 15:50:39
depth1
children0
last_payout2018-09-16 15:50:39
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length1,693
author_reputation148,902,805,319,183
root_title"[Math Talk #24] Integer Division Algorithm"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id70,800,483
net_rshares0
@pairplay1 ·
You received 0.41 % upvote as a reward From round 2 on 2018.09.11. Congrats!
properties (22)
authorpairplay1
permlinkre-mathsolver-math-talk-24-integer-division-algorithm-20180911t072354928z
categorymath
json_metadata""
created2018-09-11 07:23:57
last_update2018-09-11 07:23:57
depth1
children0
last_payout2018-09-18 07:23:57
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length76
author_reputation70,526,143
root_title"[Math Talk #24] Integer Division Algorithm"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id70,960,373
net_rshares0
@thrufore ·
μ΄ν•΄λŠ” 잘 λͺ»ν•˜κ³  μžˆμ§€λ§Œ μ˜¬λ €μ£Όμ‹œλŠ” 글듀은 잘 보고 μžˆμŠ΅λ‹ˆλ‹€. κΈ€λ‚΄μš©μ΄λž‘μ€ 관련이 μ—†λŠ” μ§ˆλ¬ΈμΈλ°μš”, μˆ˜μ‹μ„ μ–΄λ–»κ²Œ μ €λ ‡κ²Œ κΉ”λ”ν•˜κ²Œ λ„£μœΌμ‹œλ‚˜μš”?
properties (22)
authorthrufore
permlinkre-mathsolver-math-talk-24-integer-division-algorithm-20180909t183552144z
categorymath
json_metadata{"community":"busy","app":"busy/2.5.6","format":"markdown","tags":["math"],"users":[],"links":[],"image":[]}
created2018-09-09 18:35:54
last_update2018-09-09 18:35:54
depth1
children2
last_payout2018-09-16 18:35:54
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length79
author_reputation757,807,077,757
root_title"[Math Talk #24] Integer Division Algorithm"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id70,812,903
net_rshares0
@mathsolver ·
Latexλ₯Ό μ‚¬μš©ν•˜μ‹œλ©΄ λ©λ‹ˆλ‹€.
πŸ‘  
properties (23)
authormathsolver
permlinkre-thrufore-re-mathsolver-math-talk-24-integer-division-algorithm-20180910t022714569z
categorymath
json_metadata{"tags":["math"],"app":"steemit/0.1"}
created2018-09-10 02:27:12
last_update2018-09-10 02:27:12
depth2
children1
last_payout2018-09-17 02:27:12
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length17
author_reputation1,337,981,311,807
root_title"[Math Talk #24] Integer Division Algorithm"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd0
post_id70,840,305
net_rshares209,317,303
author_curate_reward""
vote details (1)
@thrufore ·
μ•„ν•˜. 그런게 μžˆμ—ˆκ΅°μš”. κ°μ‚¬ν•©λ‹ˆλ‹€~
properties (22)
authorthrufore
permlinkre-mathsolver-re-thrufore-re-mathsolver-math-talk-24-integer-division-algorithm-20180910t134703024z
categorymath
json_metadata{"community":"busy","app":"busy/2.5.6","format":"markdown","tags":["math"],"users":[],"links":[],"image":[]}
created2018-09-10 13:47:24
last_update2018-09-10 13:47:24
depth3
children0
last_payout2018-09-17 19:56:51
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length20
author_reputation757,807,077,757
root_title"[Math Talk #24] Integer Division Algorithm"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id70,885,033
net_rshares0