<center> <img src = "https://i.imgsafe.org/d0/d09ff1a38f.png" height = "300" width = "400"/></center> [1] # Parabola - Interesting Properties and Usages ## 1. From Cone to Parabola Conic section is a curve obtained as the intersection of the surface of a cone with a plane. If the cutting plane is parallel to exactly one generating line of the cone, then the conic is unbounded and is called a parabola. <center> <img src = "https://i.imgsafe.org/d1/d199decd7e.png" height = "400" width = "500"/></center> Look at the following figure. <center> <img src = "https://i.imgsafe.org/d3/d3b7c7418f.png" height = "400" /></center> 1. Plane <img src="http://latex.codecogs.com/gif.latex?\alpha" title="\alpha" /> cross with the cone parallel to its generating line. 2. Pick a point <img src="http://latex.codecogs.com/gif.latex?P" title="P" /> on the intersecting line between plane <img src="http://latex.codecogs.com/gif.latex?\alpha" title="\alpha" /> and the cone (which is painted in brown) 3. Then there exist unique sphere <img src="http://latex.codecogs.com/gif.latex?O" title="C" /> such that it contacts with the plane <img src="http://latex.codecogs.com/gif.latex?\alpha" title="\alpha" /> and the cone. <center> <img src = "https://i.imgsafe.org/d3/d3d01ccb0e.png" height = "400" /> </center> Denote the point of contact between <img src="http://latex.codecogs.com/gif.latex?O" title="O" /> and <img src="http://latex.codecogs.com/gif.latex?\alpha" title="\alpha" /> as <img src="http://latex.codecogs.com/gif.latex?F" title="F" /> . 4. Now, define the intersection between <img src="http://latex.codecogs.com/gif.latex?\overline{PA}" title="\overline{PA}" /> and <img src="http://latex.codecogs.com/gif.latex?O" title="O" /> as <img src="http://latex.codecogs.com/gif.latex?E" title="E" /> . Since <img src="http://latex.codecogs.com/gif.latex?\overline{PA}" title="\overline{PA}" /> and <img src="http://latex.codecogs.com/gif.latex?O" title="O" /> only intersects (i.e. in contact) in <img src="http://latex.codecogs.com/gif.latex?E" title="E" />, we get <center> <img src="http://latex.codecogs.com/gif.latex?\overline{PF}&space;=&space;\overline{PE}" title="\overline{PF} = \overline{PE}" /> </center> 5. Line <img src="http://latex.codecogs.com/gif.latex?\ell&space;=&space;\alpha&space;\cap&space;\beta" title="\ell = \alpha \cap \beta" align = "center"/> where <img src="http://latex.codecogs.com/gif.latex?\beta" title="\beta" align = "center"/> is the plane perpendicular to the axis of rotation of the cone which has point <img src="http://latex.codecogs.com/gif.latex?E" title="E" /> in it. Define <img src="http://latex.codecogs.com/gif.latex?I" title="I" /> to be the foot of perpendicular from <img src="http://latex.codecogs.com/gif.latex?P" title="P" /> to <img src="http://latex.codecogs.com/gif.latex?\ell" title="\ell" /> . Then we get a nice property <center> <img src="http://latex.codecogs.com/gif.latex?\overline{PI}&space;=&space;\overline{PE}" title="\overline{PI} = \overline{PE}" /> </center> so that <img src="http://latex.codecogs.com/gif.latex?\overline{PF}&space;=&space;\overline{PI}" title="\overline{PF} = \overline{PI}" /> . This means that the intersecting curve between the cone and plane <img src="http://latex.codecogs.com/gif.latex?\alpha" title="\alpha" /> is a parabola having focal point <img src="http://latex.codecogs.com/gif.latex?F" title="F" /> and directrix <img src="http://latex.codecogs.com/gif.latex?\ell" title="\ell" /> . ## 2. Examples and Usages ### Example 1. In physics Consider the following cylindrical container with liquid to be rotating at uniform angualr velocity <img src="http://latex.codecogs.com/gif.latex?\omega" title="\omega" /> . <center> <img src = "https://i.imgsafe.org/d4/d41ed69a77.png" /> </center> [2] The width of the container (or the diameter) is <img src="http://latex.codecogs.com/gif.latex?D" title="D" /> . Consider an infinitesimal liquid element <img src="http://latex.codecogs.com/gif.latex?dm" title="dm" /> at height <img src="http://latex.codecogs.com/gif.latex?h" title="h" /> above the minimum of the parabola. The forces acting on it are 1. Gravitational force <img src="http://latex.codecogs.com/gif.latex?\mathbf{g}dm" title="\mathbf{g}dm" align = "center"/> 2. Centripetal force <img src="http://latex.codecogs.com/gif.latex?dF_c&space;=&space;r\omega^2&space;dm" title="dF_c = r\omega^2 dm" align = "center"/> . Now the angle between the two forces <img src="http://latex.codecogs.com/gif.latex?\alpha" title="\alpha" /> will have the tangent value <center> <img src="http://latex.codecogs.com/gif.latex?\tan&space;\alpha=&space;\frac{dh}{dr}&space;=&space;\frac{dF_c}{\mathbf{g}dm}&space;=&space;\frac{r\omega^2}{\mathbf{g}}" title="\tan \alpha= \frac{dh}{dr} = \frac{dF_c}{\mathbf{g}dm} = \frac{r\omega^2}{\mathbf{g}}" /> </center> This means that <center> <img src="http://latex.codecogs.com/gif.latex?\mathbf{g}dh&space;=&space;r\omega^2&space;dr" title="\mathbf{g}dh = r\omega^2 dr" /> </center> Integrating both sides, <center> <img src="http://latex.codecogs.com/gif.latex?\int_0^{r}&space;r'\omega^2&space;dr'&space;=&space;\int_0^{h}&space;\mathbf{g}dh'&space;\implies&space;h&space;=&space;\frac{\omega^2&space;r^2}{2\mathbf{g}}" title="\int_0^{r} r'\omega^2 dr' = \int_0^{h} \mathbf{g}dh' \implies h = \frac{\omega^2 r^2}{2\mathbf{g}}" /> </center> which is the parabola. By rotation, the surface of spinning water would be the paraboloid, <center> <img src = "https://i.imgsafe.org/d4/d4557ca37e.png" height = "400" /></center> ### Example 2. Paraboloid mirror <center> <img src = "https://i.imgsafe.org/d4/d4847c2d2a.png" height = "400"/> </center> Suppose a light is reflected by the parabolic mirror at point <img src="http://latex.codecogs.com/gif.latex?P(x_0,&space;y_0)" title="P(x_0, y_0)" align = "center"/> , where the initial path of light was <img src="http://latex.codecogs.com/gif.latex?y&space;=&space;y_0" title="y = y_0" align = "center"/> . The Law of Reflection states that the angle between the incidence ray and mirror is equal to the angle between the reflected ray and mirror. Angle between <img src="http://latex.codecogs.com/gif.latex?\overline{PE}" title="\overline{PE}" /> and <img src="http://latex.codecogs.com/gif.latex?\ell" title="\ell" />: <img src="http://latex.codecogs.com/gif.latex?\theta_i" title="\theta_i" align = "center"/> Angle between <img src="http://latex.codecogs.com/gif.latex?\overline{PF}" title="\overline{PF}" /> and <img src="http://latex.codecogs.com/gif.latex?\ell" title="\ell" />: <img src="http://latex.codecogs.com/gif.latex?\theta_o" title="\theta_o" /> Using dot product between directional vectors, <center> <img src="http://latex.codecogs.com/gif.latex?|\cos&space;\theta_i&space;|=&space;\frac{|(2p/y_0&space;,&space;-1)&space;\cdot&space;(0,&space;1)|}{\sqrt{(2p/y_0)^2&space;+&space;1}\sqrt{1}}&space;=&space;\frac{1}{\sqrt{1&space;+&space;(2p/y_0)^2}}" title="\cos \theta_i = \frac{(2p/y_0 , -1) \cdot (0, 1)}{\sqrt{(2p/y_0)^2 + 1}\sqrt{1}} = \frac{-1}{\sqrt{1 + (2p/y_0)^2}}" /> </center> <center> <img src="http://latex.codecogs.com/gif.latex?|\cos&space;\theta_o|&space;=&space;\frac{|(y_0&space;,&space;p-x_0)&space;\cdot&space;(2p/y_0,&space;-1)|}{\sqrt{y_0^2&space;+&space;(p-x_0)^2}\sqrt{1&space;+&space;(2p/y_0)^2}}&space;=&space;\frac{|p+&space;x_0|}{|p&space;+&space;x_0|\sqrt{1&space;+&space;(2p/y_0)^2}}&space;=&space;\frac{1}{\sqrt{1&space;+&space;(2p/y_0)^2}}" title="|\cos \theta_o| = \frac{|(y_0 , p-x_0) \cdot (2p/y_0, -1)|}{\sqrt{y_0^2 + (p-x_0)^2}\sqrt{1 + (2p/y_0)^2}} = \frac{|p+ x_0|}{|p + x_0|\sqrt{1 + (2p/y_0)^2}} = \frac{1}{\sqrt{1 + (2p/y_0)^2}}" /> </center> (using ) <img src="http://latex.codecogs.com/gif.latex?y_0^2&space;=&space;4px_0" title="y_0^2 = 4px_0" align = "center" />. Now we get <center> <img src="http://latex.codecogs.com/gif.latex?\cos\theta_i&space;=&space;\cos&space;\theta_o&space;\implies&space;\theta_i&space;=&space;\theta_0" title="\cos\theta_i = \cos \theta_o \implies \theta_i = \theta_0" /> </center> since all angles are accute. This means that every ray coming parallel with the axis of rotation will be concentrated to the focal point of parabola <img src="http://latex.codecogs.com/gif.latex?F" title="F" /> . 1. We can apply this fact in making parabolic antennas, an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves. <center> <img src = "https://i.imgsafe.org/d4/d4bd584666.jpeg" width = "400"/></center> [3] 2. Also in solar power generation, the solar dish in parabolic shape concentrates the solar energy to its focal point, which greatly increases the heat generation. <center> <img src = "https://i.imgsafe.org/d4/d4c1fb0a79.png" width = "400"/> </center> [4] ### 3. Citation [1] https://en.wikipedia.org/wiki/Conic_section (image is used) [2] https://physics.stackexchange.com/questions/293106/shape-of-water-in-rotating-bucket (image is used) [3] https://en.wikipedia.org/wiki/Parabolic_antenna (only image is used) [4] https://www.researchgate.net/figure/Solar-dish-collector-with-conical-receiver-photographed-by-the-authors_fig2_269575959 All the other graphic images are made by myself using GeoGebra 3D plotter and Graphic Calculator.
author | mathsolver |
---|---|
permlink | math-talk-8-from-cone-to-parabola-properties-and-usages |
category | math |
json_metadata | {"tags":["math","mathematics","science","steemstem","mathsolver"],"image":["https://i.imgsafe.org/d0/d09ff1a38f.png","https://i.imgsafe.org/d1/d199decd7e.png","https://i.imgsafe.org/d3/d3b7c7418f.png","http://latex.codecogs.com/gif.latex?\\alpha","http://latex.codecogs.com/gif.latex?P","http://latex.codecogs.com/gif.latex?O","https://i.imgsafe.org/d3/d3d01ccb0e.png","http://latex.codecogs.com/gif.latex?F","http://latex.codecogs.com/gif.latex?\\overline{PA}","http://latex.codecogs.com/gif.latex?E","http://latex.codecogs.com/gif.latex?\\overline{PF}&space;=&space;\\overline{PE}","http://latex.codecogs.com/gif.latex?\\ell&space;=&space;\\alpha&space;\\cap&space;\\beta","http://latex.codecogs.com/gif.latex?\\beta","http://latex.codecogs.com/gif.latex?I","http://latex.codecogs.com/gif.latex?\\ell","http://latex.codecogs.com/gif.latex?\\overline{PI}&space;=&space;\\overline{PE}","http://latex.codecogs.com/gif.latex?\\overline{PF}&space;=&space;\\overline{PI}","http://latex.codecogs.com/gif.latex?\\omega","https://i.imgsafe.org/d4/d41ed69a77.png","http://latex.codecogs.com/gif.latex?D","http://latex.codecogs.com/gif.latex?dm","http://latex.codecogs.com/gif.latex?h","http://latex.codecogs.com/gif.latex?\\mathbf{g}dm","http://latex.codecogs.com/gif.latex?dF_c&space;=&space;r\\omega^2&space;dm","http://latex.codecogs.com/gif.latex?\\tan&space;\\alpha=&space;\\frac{dh}{dr}&space;=&space;\\frac{dF_c}{\\mathbf{g}dm}&space;=&space;\\frac{r\\omega^2}{\\mathbf{g}}","http://latex.codecogs.com/gif.latex?\\mathbf{g}dh&space;=&space;r\\omega^2&space;dr","http://latex.codecogs.com/gif.latex?\\int_0^{r}&space;r'\\omega^2&space;dr'&space;=&space;\\int_0^{h}&space;\\mathbf{g}dh'&space;\\implies&space;h&space;=&space;\\frac{\\omega^2&space;r^2}{2\\mathbf{g}}","https://i.imgsafe.org/d4/d4557ca37e.png","https://i.imgsafe.org/d4/d4847c2d2a.png","http://latex.codecogs.com/gif.latex?P(x_0,&space;y_0)","http://latex.codecogs.com/gif.latex?y&space;=&space;y_0","http://latex.codecogs.com/gif.latex?\\overline{PE}","http://latex.codecogs.com/gif.latex?\\theta_i","http://latex.codecogs.com/gif.latex?\\overline{PF}","http://latex.codecogs.com/gif.latex?\\theta_o","http://latex.codecogs.com/gif.latex?|\\cos&space;\\theta_i&space;|=&space;\\frac{|(2p/y_0&space;,&space;-1)&space;\\cdot&space;(0,&space;1)|}{\\sqrt{(2p/y_0)^2&space;+&space;1}\\sqrt{1}}&space;=&space;\\frac{1}{\\sqrt{1&space;+&space;(2p/y_0)^2}}","http://latex.codecogs.com/gif.latex?|\\cos&space;\\theta_o|&space;=&space;\\frac{|(y_0&space;,&space;p-x_0)&space;\\cdot&space;(2p/y_0,&space;-1)|}{\\sqrt{y_0^2&space;+&space;(p-x_0)^2}\\sqrt{1&space;+&space;(2p/y_0)^2}}&space;=&space;\\frac{|p+&space;x_0|}{|p&space;+&space;x_0|\\sqrt{1&space;+&space;(2p/y_0)^2}}&space;=&space;\\frac{1}{\\sqrt{1&space;+&space;(2p/y_0)^2}}","http://latex.codecogs.com/gif.latex?y_0^2&space;=&space;4px_0","http://latex.codecogs.com/gif.latex?\\cos\\theta_i&space;=&space;\\cos&space;\\theta_o&space;\\implies&space;\\theta_i&space;=&space;\\theta_0","https://i.imgsafe.org/d4/d4bd584666.jpeg","https://i.imgsafe.org/d4/d4c1fb0a79.png"],"links":["https://en.wikipedia.org/wiki/Conic_section","https://physics.stackexchange.com/questions/293106/shape-of-water-in-rotating-bucket","https://en.wikipedia.org/wiki/Parabolic_antenna","https://www.researchgate.net/figure/Solar-dish-collector-with-conical-receiver-photographed-by-the-authors_fig2_269575959"],"app":"steemit/0.1","format":"markdown"} |
created | 2018-08-22 11:50:36 |
last_update | 2018-08-22 11:50:36 |
depth | 0 |
children | 2 |
last_payout | 2018-08-29 11:50:36 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 7.784 HBD |
curator_payout_value | 2.491 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 9,393 |
author_reputation | 1,337,981,311,807 |
root_title | "[Math Talk #8] From Cone to Parabola - Properties and Usages" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 69,010,386 |
net_rshares | 7,278,902,488,249 |
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
wackou | 0 | 81,120,708,755 | 1.07% | ||
lafona-miner | 0 | 970,845,256,892 | 20% | ||
hr1 | 0 | 53,393,131,688 | 0.02% | ||
tombstone | 0 | 221,964,967,231 | 0.6% | ||
tuck-fheman | 0 | 6,955,344,016 | 1.79% | ||
lola-carola | 0 | 645,402,813 | 1.79% | ||
kevinwong | 0 | 121,275,378,596 | 1.5% | ||
justtryme90 | 0 | 183,425,119,341 | 10% | ||
anwenbaumeister | 0 | 20,869,677,932 | 3.59% | ||
roelandp | 0 | 0 | 1.79% | ||
raymondspeaks | 0 | 283,032,027 | 1.79% | ||
arconite | 0 | 604,545,519 | 0.75% | ||
lemouth | 0 | 83,708,359,912 | 17% | ||
rjbauer85 | 0 | 1,193,802,983 | 20% | ||
lamouthe | 0 | 7,395,918,167 | 20% | ||
curie | 0 | 153,078,682,443 | 3.59% | ||
hendrikdegrote | 0 | 1,828,303,607,586 | 3.59% | ||
vact | 0 | 71,766,884,948 | 3.59% | ||
roguewriter | 0 | 176,551,301 | 1.79% | ||
steemstem | 0 | 698,823,496,074 | 20% | ||
sethroot | 0 | 272,293,291 | 0.35% | ||
gangstayid | 0 | 137,014,835 | 1.79% | ||
foundation | 0 | 2,640,346,952 | 20% | ||
the-devil | 0 | 1,819,197,157 | 20% | ||
thevenusproject | 0 | 10,810,315,128 | 20% | ||
dna-replication | 0 | 5,361,805,080 | 20% | ||
steemitboard | 0 | 462,635,496 | 1% | ||
resteemer | 0 | 122,665,787 | 1.79% | ||
pacokam8 | 0 | 265,399,951 | 1.43% | ||
borislavzlatanov | 0 | 1,543,965,632 | 20% | ||
tibra | 0 | 1,475,858,788 | 100% | ||
moksamol | 0 | 423,695,172 | 1.79% | ||
getrichordie | 0 | 179,797,252 | 1.79% | ||
thatsweeneyguy | 0 | 90,405,025 | 1.79% | ||
foways | 0 | 97,268,149 | 1.79% | ||
eurogee | 0 | 329,010,609 | 2% | ||
dbzfan4awhile | 0 | 162,186,436 | 1.79% | ||
mrstaf | 0 | 75,339,477 | 1.79% | ||
fredrikaa | 0 | 31,346,826,502 | 10% | ||
helo | 0 | 2,662,645,273 | 10% | ||
tantawi | 0 | 85,004,386 | 3.59% | ||
locikll | 0 | 1,507,108,447 | 7.18% | ||
dber | 0 | 8,820,206,351 | 20% | ||
mahdiyari | 0 | 15,175,154,916 | 10% | ||
fanstaf | 0 | 282,053,719 | 3.05% | ||
kerriknox | 0 | 239,800,522 | 20% | ||
alexander.alexis | 0 | 4,781,187,631 | 14% | ||
howtostartablog | 0 | 185,068,059 | 0.35% | ||
blessing97 | 0 | 793,670,486 | 20% | ||
orcheva | 0 | 189,467,514 | 1.79% | ||
suesa | 0 | 91,468,340,417 | 25% | ||
cryptokrieg | 0 | 891,858,228 | 3.59% | ||
rockeynayak | 0 | 115,737,014 | 20% | ||
ertwro | 0 | 7,909,029,359 | 20% | ||
ludmila.kyriakou | 0 | 216,523,642 | 6% | ||
coloringiship | 0 | 392,415,285 | 0.71% | ||
nitesh9 | 0 | 4,783,511,575 | 20% | ||
fancybrothers | 0 | 3,826,119,606 | 6% | ||
churchboy | 0 | 3,363,711,682 | 20% | ||
howo | 0 | 23,692,116,620 | 10% | ||
himal | 0 | 1,464,716,101 | 20% | ||
nitego | 0 | 154,648,308 | 1.07% | ||
neumannsalva | 0 | 372,415,887 | 1.79% | ||
abigail-dantes | 0 | 316,723,978,677 | 20% | ||
esteemguy | 0 | 166,778,039 | 20% | ||
joe.nobel | 0 | 450,621,625 | 2% | ||
g0nr0gue | 0 | 190,998,728 | 1.79% | ||
alexzicky | 0 | 3,097,236,418 | 5% | ||
mountain.phil28 | 0 | 3,474,595,185 | 25% | ||
akeelsingh | 0 | 796,807,495 | 20% | ||
mountainwashere | 0 | 5,974,731,980 | 20% | ||
zest | 0 | 10,662,729,672 | 25% | ||
felixrodriguez | 0 | 692,826,250 | 10% | ||
pearlumie | 0 | 8,756,674,492 | 20% | ||
gabox | 0 | 201,726,654 | 0.17% | ||
indy8phish | 0 | 296,957,643 | 1.79% | ||
honeysara | 0 | 204,199,705 | 0.89% | ||
nurhayati | 0 | 131,553,191 | 0.75% | ||
jefpatat | 0 | 2,100,395,612 | 3.59% | ||
cooknbake | 0 | 113,029,297 | 0.71% | ||
anna-mi | 0 | 95,131,584 | 1.79% | ||
clweeks | 0 | 250,995,866 | 2.15% | ||
torico | 0 | 270,798,671 | 0.39% | ||
ksolymosi | 0 | 2,475,559,910 | 20% | ||
damzxyno | 0 | 246,687,264 | 4% | ||
peaceandwar | 0 | 488,292,410 | 1.79% | ||
erh.germany | 0 | 490,076,682 | 1% | ||
pratik27 | 0 | 440,951,792 | 10% | ||
rachelsmantra | 0 | 815,324,512 | 20% | ||
gra | 0 | 6,979,152,866 | 20% | ||
utopian-io | 0 | 2,064,175,532,846 | 3% | ||
tfcoates | 0 | 553,187,841 | 5% | ||
sci-guy | 0 | 66,216,919 | 20% | ||
janine-ariane | 0 | 498,188,199 | 5% | ||
drmake | 0 | 2,556,753,962 | 1.79% | ||
eleonardo | 0 | 74,480,254 | 2% | ||
physics.benjamin | 0 | 151,934,856 | 20% | ||
egotheist | 0 | 296,442,110 | 2% | ||
kenadis | 0 | 5,389,880,412 | 20% | ||
amavi | 0 | 3,126,614,052 | 4% | ||
robotics101 | 0 | 840,420,503 | 16% | ||
tristan-muller | 0 | 123,550,385 | 20% | ||
fejiro | 0 | 224,755,878 | 10% | ||
aamin | 0 | 316,420,693 | 10% | ||
sco | 0 | 13,350,634,547 | 20% | ||
adetola | 0 | 1,345,406,120 | 20% | ||
anikekirsten | 0 | 781,392,678 | 3.59% | ||
rharphelle | 0 | 1,758,837,150 | 25% | ||
dysfunctional | 0 | 1,407,617,727 | 10% | ||
rasamuel | 0 | 97,406,660 | 1.79% | ||
stahlberg | 0 | 530,443,862 | 1.79% | ||
catalincernat | 0 | 369,204,355 | 3.59% | ||
shoganaii | 0 | 757,642,557 | 10% | ||
jesusjacr | 0 | 513,289,220 | 2% | ||
laritheghost | 0 | 154,227,199 | 1.79% | ||
jlmol7 | 0 | 106,468,055 | 20% | ||
mittymartz | 0 | 443,770,457 | 10% | ||
adamzi | 0 | 482,484,852 | 1.79% | ||
terrylovejoy | 0 | 3,912,491,660 | 8% | ||
olajidekehinde | 0 | 260,992,159 | 10% | ||
real2josh | 0 | 203,135,950 | 10% | ||
giddyupngo | 0 | 259,423,442 | 1.79% | ||
steepup | 0 | 430,498,717 | 8% | ||
mrday | 0 | 438,792,153 | 1.79% | ||
joelgonz1982 | 0 | 72,366,686 | 1.79% | ||
debbietiyan | 0 | 82,874,877 | 1.79% | ||
emirfirlar | 0 | 75,644,785 | 1.79% | ||
randomwanderings | 0 | 71,975,562 | 1.79% | ||
kingabesh | 0 | 653,145,007 | 10% | ||
josephace135 | 0 | 1,547,818,890 | 10% | ||
didic | 0 | 838,054,541 | 1.79% | ||
niko3d | 0 | 99,109,842 | 1.79% | ||
operahoser | 0 | 218,306,478 | 0.53% | ||
kelos | 0 | 347,172,860 | 10% | ||
dexterdev | 0 | 1,487,003,527 | 20% | ||
ugonma | 0 | 884,598,712 | 20% | ||
ameliabartlett | 0 | 107,599,642 | 0.53% | ||
robertbira | 0 | 1,066,785,626 | 5% | ||
ajpacheco1610 | 0 | 445,589,841 | 10% | ||
vegan.niinja | 0 | 105,337,811 | 1.79% | ||
flugschwein | 0 | 4,666,795,729 | 17.4% | ||
lianaakobian | 0 | 4,368,280,874 | 16% | ||
jbrrd | 0 | 147,444,421 | 15% | ||
crypto-econom1st | 0 | 108,520,178 | 1% | ||
chimtivers96 | 0 | 217,929,540 | 3.59% | ||
sissyjill | 0 | 112,150,951 | 7% | ||
amirdesaingrafis | 0 | 77,087,993 | 1.79% | ||
joelagbo | 0 | 138,471,440 | 1.79% | ||
morbyjohn | 0 | 177,300,413 | 7% | ||
anyes2013 | 0 | 328,464,552 | 10% | ||
muratkbesiroglu | 0 | 3,471,125,376 | 1% | ||
theunlimited | 0 | 61,171,664 | 10% | ||
cryptoitaly | 0 | 1,783,416,026 | 10% | ||
effofex | 0 | 785,127,252 | 10% | ||
abdulmath | 0 | 415,173,868 | 10% | ||
de-stem | 0 | 9,327,856,831 | 19.8% | ||
serylt | 0 | 4,408,234,757 | 19% | ||
bavi | 0 | 77,474,666 | 1.79% | ||
yann85 | 0 | 293,358,560 | 12% | ||
ari16 | 0 | 283,021,356 | 10% | ||
kendallron | 0 | 69,752,740 | 3.59% | ||
michaelwrites | 0 | 279,155,095 | 10% | ||
apteacher | 0 | 126,971,961 | 0.71% | ||
serialfiller | 0 | 4,723,223,999 | 20% | ||
vanessahampton | 0 | 1,147,394,079 | 10% | ||
temitayo-pelumi | 0 | 1,471,023,997 | 20% | ||
qberryfarms | 0 | 97,475,532 | 1.79% | ||
shookriya | 0 | 85,888,422 | 0.71% | ||
doctor-cog-diss | 0 | 94,075,826 | 20% | ||
niouton | 0 | 260,650,102 | 0.71% | ||
soundworks | 0 | 70,627,931 | 2.78% | ||
biomimi | 0 | 224,885,789 | 40% | ||
ibk-gabriel | 0 | 171,856,510 | 10% | ||
conficker | 0 | 1,981,742,366 | 20% | ||
mahmudulhassan | 0 | 88,849,410 | 1.79% | ||
purelyscience | 0 | 167,546,553 | 10% | ||
kind-sir | 0 | 64,947,508 | 2% | ||
call-me-howie | 0 | 3,386,079,184 | 1.79% | ||
hansmast | 0 | 337,108,838 | 1.79% | ||
wstanley226 | 0 | 111,830,689 | 50% | ||
gatis-photo | 0 | 109,657,615 | 2% | ||
testomilian | 0 | 69,978,662 | 11.88% | ||
clement.poiret | 0 | 246,316,880 | 3.59% | ||
haogee | 0 | 162,041,520 | 1.79% | ||
scienceblocks | 0 | 8,368,253,953 | 100% | ||
perpetuum-lynx | 0 | 425,197,085 | 19% | ||
herbayomi | 0 | 396,350,921 | 10% | ||
torrey.blog | 0 | 174,163,846 | 3.59% | ||
swapsteem | 0 | 118,842,442 | 10% | ||
predict-crypto | 0 | 1,198,507,445 | 0.07% | ||
chickenmeat | 0 | 97,302,465 | 1.79% | ||
amansharma555 | 0 | 589,103,858 | 100% | ||
leftyobradovich | 0 | 70,498,212 | 13% | ||
mathsolver | 0 | 1,963,756,012 | 100% | ||
shidded | 0 | 586,389,991 | 100% | ||
msolver | 0 | 607,493,056 | 100% |
Congratulations @mathsolver! You have completed the following achievement on Steemit and have been rewarded with new badge(s) : [](http://steemitboard.com/@mathsolver) You got your First payout <sub>_Click on the badge to view your Board of Honor._</sub> <sub>_If you no longer want to receive notifications, reply to this comment with the word_ `STOP`</sub> To support your work, I also upvoted your post! **Do not miss the last post from @steemitboard:** [SteemitBoard and the Veterans on Steemit - The First Community Badge.](https://steemit.com/veterans/@steemitboard/steemitboard-and-the-veterans-on-steemit-the-first-community-badge) > You can upvote this notification to help all Steemit users. Learn why [here](https://steemit.com/steemitboard/@steemitboard/http-i-cubeupload-com-7ciqeo-png)!
author | steemitboard |
---|---|
permlink | steemitboard-notify-mathsolver-20180822t223505000z |
category | math |
json_metadata | {"image":["https://steemitboard.com/img/notify.png"]} |
created | 2018-08-22 22:35:03 |
last_update | 2018-08-22 22:35:03 |
depth | 1 |
children | 0 |
last_payout | 2018-08-29 22:35:03 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 897 |
author_reputation | 38,975,615,169,260 |
root_title | "[Math Talk #8] From Cone to Parabola - Properties and Usages" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 69,059,921 |
net_rshares | 0 |
#### Hi @mathsolver! Your post was upvoted by utopian.io in cooperation with steemstem - supporting knowledge, innovation and technological advancement on the Steem Blockchain. #### Contribute to Open Source with utopian.io Learn how to contribute on <a href="https://join.utopian.io">our website</a> and join the new open source economy. **Want to chat? Join the Utopian Community on Discord https://discord.gg/h52nFrV**
author | utopian-io |
---|---|
permlink | 20180822t195215454z |
category | math |
json_metadata | {"tags":["utopian.tip"],"app":"utopian-io"} |
created | 2018-08-22 19:52:18 |
last_update | 2018-08-22 19:52:18 |
depth | 1 |
children | 0 |
last_payout | 2018-08-29 19:52:18 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 424 |
author_reputation | 152,955,367,999,756 |
root_title | "[Math Talk #8] From Cone to Parabola - Properties and Usages" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 69,049,685 |
net_rshares | 0 |