create account

Compound interest and the exponential function by nenio

View this thread on: hive.blogpeakd.comecency.com
· @nenio · (edited)
$17.67
Compound interest and the exponential function
In this post we will recall the readers the proof of the well-known formula of compound interest and how it is related with the exponential function. It is worth to mention that the famous mathematical constant e, was "discover" by **Jacob Bernoulli** in 1680, while studying the compound interest. We will show here this analysis.

The formula for the accumulated capital after n years of compounding an initial capital or principal x<sub>0</sub> with an  fixed anual interest  rate i, and with a compound frequency k, is
<center>
https://steemitimages.com/DQmRuoyssQjVD5Bomqnns1LiCs4L6ptUWu84VUJPN2UvYMt/int1.png
</center>
Now we show, how to prove this formula.

Let us suppose that you have an initial capital x<sub>0 </sub>and you deposit it with a fix interest rate i for a period of time, say one year. After one year you have x<sub>1</sub> amount of capital, where x<sub>1</sub>=x<sub>0</sub> (1+i). Now you reinvest x<sub>1</sub> for the same period of time and at the same interest. After the second year the accumulated capital is x<sub>2</sub>:
<center>
<h2>
x<sub>2</sub>=x<sub>1</sub>(1+i)=x<sub>0</sub>(1+i)<sup>2</sup>.
</h2>
</center>

So after n years, if the principal plus interest are compounded at the same fixed interest rate, the accumulated capital is
<center><h2>
x<sub>n</sub>=x<sub>n-1</sub>(1+i)= ... =x<sub>0</sub>(1+i)<sup>n</sup>.
</h2></center>

Now we consider a variation of the investment strategy. Your initial capital is x<sub>0</sub> and  you deposit it for a year with a fix interest rate i, however your capital and interests are paid after six months and you reinvest it. So after six month your accumulated capital is
<center>
https://steemitimages.com/DQmXMpo7R63L9duVCpgmvo7kXb9WuRchWDcJT3pYSpS8jP7/int2.png
</center>
If you reinvest this amount (compounding the principal  and interest), in the next six months (one year after your initial deposit). The accumulated capital is
<center>
https://steemitimages.com/DQmegESMTASCf5okwi6scvEEdazuB8Ari13D3MKy7VYYfSM/int3.png
</center>
If you keep this strategy after n years the accumulated capital is
<center>
https://steemitimages.com/DQmcGen21JHgZJbk1hyE48VAsRfUCu5VUfTkR9s1MXCvpfi/int4.png
</center>
If you modified the strategy, so that the interests are received every month and and they are reinvested (compounded), then the accumulated capital  after one year is 
<center>
https://steemitimages.com/DQmbHWPpPVJEP6sQvUqS6nCT6cfaGA3Gui4mJGFUj6PpvQ2/int5.png
</center>
and after n years, with the same strategy the accumulated capital is
<center>
https://steemitimages.com/DQmYdgnAC4gu5X2Q2ZQiNd7rfwADq7Zj7hjVm4UtSCuLSqJ/int6.png
</center>
Now suppose that the interests are paid daily and compounded after payment. The capital accumulated after n years is
<center>
https://steemitimages.com/DQmc9W8ASAMU9oQkg8xmNBv9Mh3efnWNSixybDLRTTPzk5s/int7.png
</center>
So what happens if the interests are paid every second and compounded, or if this is done continuously. What is the formula? The answer is given by the limit
<center>
https://steemitimages.com/DQmRgKZRRAoTzXFEZ7wGwu5ASMvEc49KE6KwiYSvVJvi6uD/int8.png
</center>
The following is a well-known limit:
<center>
https://steemitimages.com/DQmWcvishb243XsA4Qn2NM395YFzXmf5ajszdk7r8wRWsqt/int9.png
</center>

Where e is the famous constant, whose rational approximation is   2.71828... 
This is the limit, that the Swiss mathematician **Jacob Bernoulli** worked in 1680.

From this expression follows:
<center>
https://steemitimages.com/DQmbG5uARswqyd8coDnFKLp85JLPgX494EN4MxPr6W4ZDfn/int10.png
</center>

Hence x<sub>n</sub>=x<sub>0</sub>e<sup>in</sup>.

Using this expression, we can answer how long does it take to duplicate the initial capital, assuming we use continuous compounding. In fact, we need x<sub>n</sub>=2x<sub>0</sub>, then
<center>
https://steemitimages.com/DQmVkuTKXCu3Mp8pix8GrUUe98aTMb2G8u2UcBym6wfcus9/int11.png
</center>
Therefore
<center>
https://steemitimages.com/DQmeQxu4mhZYMjynmcDrLn9LbLsx1KGuMf73xrzCpToY7pL/int12.png
</center>

References:
https://en.wikipedia.org/wiki/Compound_interest
[https://en.wikipedia.org/wiki/E_(mathematical_constant)](https://en.wikipedia.org/wiki/E_(mathematical_constant))

<center><h3>
All the formulae of this post were typed by myself in LaTeX.</h3>
</center>
👍  , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and 32 others
properties (23)
authornenio
permlinkcompound-interest-and-the-exponential-function
categorymathematics
json_metadata{"tags":["mathematics","steemstem","steemiteducation","science","education"],"image":["https://steemitimages.com/DQmRuoyssQjVD5Bomqnns1LiCs4L6ptUWu84VUJPN2UvYMt/int1.png","https://steemitimages.com/DQmXMpo7R63L9duVCpgmvo7kXb9WuRchWDcJT3pYSpS8jP7/int2.png","https://steemitimages.com/DQmegESMTASCf5okwi6scvEEdazuB8Ari13D3MKy7VYYfSM/int3.png","https://steemitimages.com/DQmcGen21JHgZJbk1hyE48VAsRfUCu5VUfTkR9s1MXCvpfi/int4.png","https://steemitimages.com/DQmbHWPpPVJEP6sQvUqS6nCT6cfaGA3Gui4mJGFUj6PpvQ2/int5.png","https://steemitimages.com/DQmYdgnAC4gu5X2Q2ZQiNd7rfwADq7Zj7hjVm4UtSCuLSqJ/int6.png","https://steemitimages.com/DQmc9W8ASAMU9oQkg8xmNBv9Mh3efnWNSixybDLRTTPzk5s/int7.png","https://steemitimages.com/DQmRgKZRRAoTzXFEZ7wGwu5ASMvEc49KE6KwiYSvVJvi6uD/int8.png","https://steemitimages.com/DQmWcvishb243XsA4Qn2NM395YFzXmf5ajszdk7r8wRWsqt/int9.png","https://steemitimages.com/DQmbG5uARswqyd8coDnFKLp85JLPgX494EN4MxPr6W4ZDfn/int10.png","https://steemitimages.com/DQmVkuTKXCu3Mp8pix8GrUUe98aTMb2G8u2UcBym6wfcus9/int11.png","https://steemitimages.com/DQmeQxu4mhZYMjynmcDrLn9LbLsx1KGuMf73xrzCpToY7pL/int12.png"],"links":["https://en.wikipedia.org/wiki/Compound_interest","https://en.wikipedia.org/wiki/E_(mathematical_constant)"],"app":"steemit/0.1","format":"markdown"}
created2017-12-20 18:58:57
last_update2017-12-20 19:12:57
depth0
children5
last_payout2017-12-27 18:58:57
cashout_time1969-12-31 23:59:59
total_payout_value13.956 HBD
curator_payout_value3.710 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length4,267
author_reputation262,456,803,739,306
root_title"Compound interest and the exponential function"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id24,397,762
net_rshares2,828,954,163,206
author_curate_reward""
vote details (96)
@jga ·
Interesante. Precisamente ahora estoy haciendo unos cálculos de interés compuesto con las ganancias de steemit, para un futuro artículo 😉
properties (22)
authorjga
permlinkre-nenio-compound-interest-and-the-exponential-function-20171221t031421575z
categorymathematics
json_metadata{"tags":["mathematics"],"app":"steemit/0.1"}
created2017-12-21 03:14:12
last_update2017-12-21 03:14:12
depth1
children0
last_payout2017-12-28 03:14:12
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length137
author_reputation76,172,796,162,312
root_title"Compound interest and the exponential function"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id24,453,950
net_rshares0
@seanmalex ·
I knew the compound interest formula, but I didn't know how to derive it. This is really helpful
👍  
properties (23)
authorseanmalex
permlinkre-nenio-compound-interest-and-the-exponential-function-20171220t190849206z
categorymathematics
json_metadata{"tags":["mathematics"],"app":"steemit/0.1"}
created2017-12-20 19:08:57
last_update2017-12-20 19:08:57
depth1
children1
last_payout2017-12-27 19:08:57
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length96
author_reputation393,121,749,761
root_title"Compound interest and the exponential function"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id24,399,084
net_rshares3,376,912,691
author_curate_reward""
vote details (1)
@nenio ·
It is nice to read that you like the post and found it helpful. Thank you for your comment.
properties (22)
authornenio
permlinkre-seanmalex-re-nenio-compound-interest-and-the-exponential-function-20171220t191609834z
categorymathematics
json_metadata{"tags":["mathematics"],"app":"steemit/0.1"}
created2017-12-20 19:16:09
last_update2017-12-20 19:16:09
depth2
children0
last_payout2017-12-27 19:16:09
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length91
author_reputation262,456,803,739,306
root_title"Compound interest and the exponential function"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id24,400,006
net_rshares0
@steemiteducation ·
$0.10
https://imgoat.com/uploads/4173cb38f0/29566.jpg
👍  ,
properties (23)
authorsteemiteducation
permlinkre-nenio-compound-interest-and-the-exponential-function-20171220t195643732z
categorymathematics
json_metadata{"tags":["mathematics"],"image":["https://imgoat.com/uploads/4173cb38f0/29566.jpg"],"app":"steemit/0.1"}
created2017-12-20 19:56:45
last_update2017-12-20 19:56:45
depth1
children1
last_payout2017-12-27 19:56:45
cashout_time1969-12-31 23:59:59
total_payout_value0.080 HBD
curator_payout_value0.022 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length47
author_reputation221,278,890,990,142
root_title"Compound interest and the exponential function"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id24,405,275
net_rshares17,063,262,627
author_curate_reward""
vote details (2)
@nenio ·
Thank you for your support.
properties (22)
authornenio
permlinkre-steemiteducation-re-nenio-compound-interest-and-the-exponential-function-20171220t230848792z
categorymathematics
json_metadata{"tags":["mathematics"],"app":"steemit/0.1"}
created2017-12-20 23:08:48
last_update2017-12-20 23:08:48
depth2
children0
last_payout2017-12-27 23:08:48
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length27
author_reputation262,456,803,739,306
root_title"Compound interest and the exponential function"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id24,427,328
net_rshares0