Viewing a response to: @taskmaster4450le/re-taskmaster4450le-2e6ykpseq
Key Aspects of Test-Time Training for LLMs Test-time training involves temporarily updating the model’s parameters during inference using a loss function derived from the input data. The process typically follows these steps: * Start with the initial model parameters. * Generate training data from the test input. * Optimize the model parameters to minimize a loss function on this generated data. * Use the updated parameters to make predictions on the test input. * Restore the original parameters for the next test instance1 .
author | taskmaster4450le |
---|---|
permlink | re-taskmaster4450le-2yyoyu3hm |
category | hive-167922 |
json_metadata | {"app":"leothreads/0.3","format":"markdown","tags":["leofinance"],"canonical_url":"https://inleo.io/threads/view/taskmaster4450le/re-taskmaster4450le-2yyoyu3hm","isPoll":false,"pollOptions":{},"dimensions":[]} |
created | 2024-11-17 21:06:03 |
last_update | 2024-11-17 21:06:03 |
depth | 3 |
children | 0 |
last_payout | 2024-11-24 21:06:03 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 532 |
author_reputation | 2,187,279,536,416,381 |
root_title | "LeoThread 2024-11-17 10:12" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 138,516,138 |
net_rshares | 0 |