create account

RE: Brainsteem Mathematics Challenges: Factorial Sum by ruoxi.wang

View this thread on: hive.blogpeakd.comecency.com

Viewing a response to: @rycharde/brainsteem-mathematics-challenges-factorial-sum

· @ruoxi.wang · (edited)
$0.07
Interesting problem, here is my solution:

Firstly, 2^n is an even number, therefore a!, b! and c! must be either: 3 even numbers, or: 1 even and 2 odd numbers.

Factorials are all even except 1!

Path 1: 3 even numbers
We can prove that a=2 (1 < a < 3) or b=2 or c=2, otherwise the sum will be 6x (common factor of 3!) and 2^n is never divisible by 3.

Path 1-1: a=2 and b=2 and c=2
2!+2!+2!=6 is not power of 2

Path 1-2: a=2 and b=2
4+c! (c>=3) = 2^n
=> c!/4+1=2^m (m=n-2)
We can prove that c<4 otherwise c!/4 is even and c!+1 is odd number (2^m cannot be odd).
The only candidate is 3
2!+2!+3!=10 is not power of 2.

Path 1-3:
a=2 and b>=3 and c>=3
=> 2+6x+6y=2^n (x=a!/3! and y=b!/3!)
=> 3(x+y)+1=2^m (m=n-1)
We can prove that x+y must be odd and therefore b=3 or c=3 (otherwise both are divisible by 4
To simplify: 2+6+c!=2^n
=> 8+c!=2^n
=> c!/8+1=2^m (m=n-3)
We can prove that c<6 otherwise c!/8 is even and c!/8+1 is odd.
Candidates are 3,4,5
~~2!+3!+3!=14~~
~~3!+3!+3!=18~~
~~4!+3!+3!=36~~
~~None of them is power of 2~~

Updated flawed part after @rycharde pointing out missing solutions:
2!+3!+3!=14, not a power of 2
2!+3!+4!=32 (2^5)
2!+3!+5!=128 (2^7)

Path 2: 1+1+c!=2^n (2 even numbers)
then c!/2+1=2^m (m=n-1), we can prove that c<4 otherwise c!/2 is even number and c!/2+1 is odd number.
Candidates are c=2, 3, both satisfies the equation:
1!+1!+2!=4 (2^2)
1!+1!+3!=8 (2^3)

Therefore, all possible solutions are:
1!+1!+2!=2^2
1!+1!+3!=2^3
2!+3!+4!=2^5
2!+3!+5!=2^7
👍  ,
properties (23)
authorruoxi.wang
permlinkre-rycharde-brainsteem-mathematics-challenges-factorial-sum-20180326t131458734z
categorymathematics
json_metadata{"tags":["mathematics"],"app":"steemit/0.1","users":["rycharde"]}
created2018-03-26 13:15:00
last_update2018-03-26 21:23:06
depth1
children4
last_payout2018-04-02 13:15:00
cashout_time1969-12-31 23:59:59
total_payout_value0.053 HBD
curator_payout_value0.014 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length1,483
author_reputation1,144,894,866
root_title"Brainsteem Mathematics Challenges: Factorial Sum"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id46,693,495
net_rshares27,432,490,029
author_curate_reward""
vote details (2)
@quochuy ·
Too complicated for me lol
properties (22)
authorquochuy
permlinkre-ruoxiwang-re-rycharde-brainsteem-mathematics-challenges-factorial-sum-20180326t132112822z
categorymathematics
json_metadata{"tags":["mathematics"],"app":"steemit/0.1"}
created2018-03-26 13:21:12
last_update2018-03-26 13:21:12
depth2
children0
last_payout2018-04-02 13:21:12
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length26
author_reputation758,372,221,814,367
root_title"Brainsteem Mathematics Challenges: Factorial Sum"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id46,694,563
net_rshares0
@rycharde ·
Very good, and legit method, but you've missed some solutions!
Upvoted all the same!
properties (22)
authorrycharde
permlinkre-ruoxiwang-re-rycharde-brainsteem-mathematics-challenges-factorial-sum-20180326t135059328z
categorymathematics
json_metadata{"tags":["mathematics"],"app":"steemit/0.1"}
created2018-03-26 13:51:00
last_update2018-03-26 13:51:00
depth2
children2
last_payout2018-04-02 13:51:00
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length84
author_reputation19,101,504,594,449
root_title"Brainsteem Mathematics Challenges: Factorial Sum"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id46,699,548
net_rshares0
@ruoxi.wang ·
$0.08
Hi, @rycharde, thank you for the problem and response. I should have triple checked before answering, especially when it was done by tapping solution on a phone and right before bed :p

The path 1-3 is flawed:
The last bit should be
2!+3!+3!=14, not a power of 2
2!+3!+4!=32 (2^5)
2!+3!+5!=128 (2^7)

Now the solution should be completed.

Thank you again for the interesting problem, I really enjoyed my time solving it ^_^
👍  
properties (23)
authorruoxi.wang
permlinkre-rycharde-re-ruoxiwang-re-rycharde-brainsteem-mathematics-challenges-factorial-sum-20180326t210026919z
categorymathematics
json_metadata{"tags":["mathematics"],"users":["rycharde"],"app":"steemit/0.1"}
created2018-03-26 21:00:30
last_update2018-03-26 21:00:30
depth3
children1
last_payout2018-04-02 21:00:30
cashout_time1969-12-31 23:59:59
total_payout_value0.064 HBD
curator_payout_value0.020 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length424
author_reputation1,144,894,866
root_title"Brainsteem Mathematics Challenges: Factorial Sum"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id46,767,744
net_rshares34,829,251,521
author_curate_reward""
vote details (1)
@rycharde ·
That's cool! We know that a,b and c cannot *all* be 3 or more, because the sum would then always be a multiple of 3, but one of them *can be* greater than 3.
properties (22)
authorrycharde
permlinkre-ruoxiwang-re-rycharde-re-ruoxiwang-re-rycharde-brainsteem-mathematics-challenges-factorial-sum-20180327t101655884z
categorymathematics
json_metadata{"tags":["mathematics"],"app":"steemit/0.1"}
created2018-03-27 10:16:57
last_update2018-03-27 10:16:57
depth4
children0
last_payout2018-04-03 10:16:57
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length157
author_reputation19,101,504,594,449
root_title"Brainsteem Mathematics Challenges: Factorial Sum"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id46,867,568
net_rshares0