**Note: This is pure magic and highly experimental.** In a nutshell, we're going to look a the trending page and try to predict which new posts will reach trending. To do this, we're going to use ID3. According to Wikipedia: > In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan used to generate a decision tree from a dataset. ID3 is the precursor to the C4.5 algorithm, and is typically used in the machine learning and natural language processing domains. *[ID3 algorithm](https://en.wikipedia.org/wiki/ID3_algorithm)* In Ruby, we can use the ID3 algorithm through the `ai4r` gem. Ok, it's not really magic. So, how does it work? I have ID3 look at some specific attributes of top 100 trending posts. Specifically: `author_reputation percent_steem_dollars promoted category net_votes` Based on these attributes, I have it predict `total_pending_payout_value` of a new post. If `total_pending_payout_value` can be predicted, we will display the difference between the prediction and the current pending payout. As always, we use [Radiator](https://steemit.com/steem/@inertia/radiator-steem-ruby-api-client) with `bundler`. You can get `bundler` with this command: ```bash $ gem install bundler ``` I've tested it on various versions of ruby. The oldest one I got it to work was: `ruby 2.0.0p645 (2015-04-13 revision 50299) [x86_64-darwin14.4.0]` First, make a project folder: ```bash $ mkdir radiator $ cd radiator ``` Create a file named `Gemfile` containing: ```ruby source 'https://rubygems.org' gem 'radiator', github: 'inertia186/radiator' gem 'ai4r' # Adds general machine learning capabilities. ``` Then run the command: ```bash $ bundle install ``` Create a file named `ai-scan.rb` containing: ```ruby require 'rubygems' require 'bundler/setup' Bundler.require def to_rep(raw) raw = raw.to_i level = Math.log10(raw.abs) level = [level - 9, 0].max level = (level * 9) + 25 level.to_i end def base_value(raw) raw.split(' ').first.to_i end def symbol_value(raw) raw.split(' ').last end api = Radiator::Api.new names = ARGV data_labels = %w( author_reputation percent_steem_dollars promoted category net_votes total_pending_payout_value ) prediction_label = data_labels.last options = { limit: 100 } options[:tag] = ARGV.first if ARGV.any? response = api.get_discussions_by_trending(options) trending_comments = response.result data_items = trending_comments.map do |comment| data_labels.map do |label| case label when 'author_reputation'; to_rep comment[label] when 'promoted'; base_value comment[label] when 'total_pending_payout_value'; base_value comment[label] else; comment[label] end end end data_set = Ai4r::Data::DataSet.new data_labels: data_labels, data_items: data_items id3 = Ai4r::Classifiers::ID3.new.build(data_set) response = api.get_discussions_by_created(options) new_comments = response.result - trending_comments predictions = new_comments.map do |comment| next unless comment.mode == 'first_payout' data_item = data_labels.map do |label| case label when 'author_reputation'; to_rep comment[label] when 'promoted'; base_value comment[label] when 'total_pending_payout_value'; base_value comment[label] else; comment[label] end end prediction = (id3.eval(data_item) rescue nil) next if prediction.nil? { difference: prediction - base_value(comment.total_pending_payout_value), symbol: symbol_value(comment.total_pending_payout_value), url: "https://steemit.com#{comment.url}" } end.reject(&:nil?) if predictions.any? puts "Predicting the following payouts will rise by:" predictions.sort_by { |p| p[:difference] }.each do |prediction| puts "#{prediction[:difference]} #{prediction[:symbol]}: #{prediction[:url]}" end else puts "Nothing to predict." end ``` Then run it: ```bash $ ruby ai-scan.rb ``` The expected output will be something like this: ``` Predicting the following payouts will rise by: 0 SBD: https://steemit.com/history/@steemizen/today-in-history-uss-arkansas 0 SBD: https://steemit.com/steem/@ozchartart/usdsteem-btc-daily-poloniex-bittrex-technical-analysis-market-report-update-162-jan-14-2017 10 SBD: https://steemit.com/travel/@writingamigo/traveler-s-observations-the-origins-of-habits-how-environement-forces-us-to-believe-that-it-is-our-fault 13 SBD: https://steemit.com/fiction/@johnjgeddes/tempest-and-tea-rediscovering-the-magic-within-part-1-of-2 15 SBD: https://steemit.com/travel/@exploretraveler/photo-of-the-day-skagway-alaska 17 SBD: https://steemit.com/news/@contentjunkie/spacex-launches-first-rocket-since-explosion 17 SBD: https://steemit.com/food/@anti-sophist/bold-lamb-loin-chops-and-basil-potatoes-2017114t195031380z 17 SBD: https://steemit.com/pizzagate/@gizmosia/the-video-the-world-must-watch-chilling-info-re-child-trafficking-posted-today 17 SBD: https://steemit.com/minecraft/@thedonutguy7/how-to-download-a-minecraft-map-for-windows 17 SBD: https://steemit.com/fly/@altcointrader77/flycoin-in-the-hands-of-a-trusted-few 17 SBD: https://steemit.com/fiction/@internutter/challenge-01476-d015-historical-hysterical-first 17 SBD: https://steemit.com/animal/@favorit/nature-that-surrounds-us-in-the-animal-world-black-stallion-23 18 SBD: https://steemit.com/film/@movie-online/confidential-secret-market-1974-romance-history 18 SBD: https://steemit.com/life/@lukestokes/day-6-update-the-wim-hof-method 18 SBD: https://steemit.com/kr/@leesunmoo/6r1hns 19 SBD: https://steemit.com/challenge30/@franks/challenge30-deep-space-mining-unobtainium ``` You can also pass a tag: ```bash $ ruby ai-scan.rb photography ``` The expected output will be something like this: ``` Predicting the following payouts will rise by: 0 SBD: https://steemit.com/travel/@koskl/visiting-cusco-peru 0 SBD: https://steemit.com/nature/@zaskia/beautiful-flower 0 SBD: https://steemit.com/photography/@distantsignal/shooting-milkshake-web-series-on-vintage-russian-lenses 0 SBD: https://steemit.com/photography/@chrissysworld/the-sky-burns-the-angels-flee-der-himmel-brennt-die-engel-fliehn-english-deutsch 0 SBD: https://steemit.com/photography/@klava/white-truffle 0 SBD: https://steemit.com/photography/@rynow/sunken-fish-trailer 0 SBD: https://steemit.com/food/@lonilush/traditional-balkan-cheese-pie-burek-original-recipe-with-pictures 0 SBD: https://steemit.com/nature/@riostarr/mushrooms-on-dead-wood 1 SBD: https://steemit.com/photography/@richar/life-and-death-on-wall-street 1 SBD: https://steemit.com/photography/@xntryk1/swapmeet-finds-640 5 SBD: https://steemit.com/photography/@jasonrussell/jacks-fork-river-10-pictures 5 SBD: https://steemit.com/photography/@kalemandra/reflections 17 SBD: https://steemit.com/photography/@briansss/check-it-out-my-photo-album-of-my-trip-through-venezuela 17 SBD: https://steemit.com/food/@alizee/pecal-tubers-vegetables-papaya-flower ``` Either way, you can use these results as voting suggestions because the ID3 algorithm thinks these articles correlate to a future payout prediction. Under the hood, here's a rough explanation of what's going on. We take the trending posts, and just extract certain fields as inputs to ID3. The inputs become: | `author_reputation` | `percent_steem_dollars` | `promoted` | `category` | `net_votes` | `total_pending_payout_value` | |-:|-:|-:|-|-:|-:| | `52` | `10000` | `0` | `romance` | `146` | `16` | | `58` | `10000` | `0` | `story` | `160` | `16` | | `67` | `0` | `0` | `science` | `162` | `16` | | `58` | `10000` | `0` | `travel` | `178` | `16` | | `60` | `10000` | `0` | `gaming` | `166` | `16` | | `54` | `10000` | `0` | `fiction` | `141` | `15` | | `54` | `10000` | `0` | `food` | `163` | `15` | | `53` | `10000` | `0` | `art` | `167` | `15` | | `67` | `0` | `0` | `japan` | `108` | `15` | | `61` | `10000` | `0` | `poker` | `21` | `15` | | `59` | `10000` | `0` | `til` | `158` | `15` | | `63` | `10000` | `0` | `music` | `165` | `15` | | `60` | `10000` | `0` | `art` | `160` | `15` | | `59` | `10000` | `0` | `aceh` | `155` | `15` | | `59` | `10000` | `0` | `writing` | `147` | `15` | | `55` | `10000` | `0` | `life` | `160` | `15` | | `51` | `10000` | `0` | `painting` | `148` | `15` | | `57` | `0` | `1` | `life` | `130` | `15` | | `59` | `10000` | `0` | `travel` | `163` | `15` | ID3 takes the above inputs and then compares them all to each new post, looking for correlations. Then it tries to predict the final `total_pending_payout_value` for the new posts. For instance, it might notice that authors with a reputation of `59`, posting in `til`, tend to have a `total_pending_payout_value` of `15`. So if a new post matches, it'll make that prediction. But then, it notices a correlation between certain `percent_steem_dollars`, `promoted`, and `category` posts, but only when the `category` is `science`. It's that flexible. As an analogy, it's a little bit like weather prediction: "In this area, on this day, for the last 100 years, when the temperature is `x` and the humidity is `y`, it rains `z` percent of the time." You will notice, I *specifically* exclude the author name from the prediction inputs. If you want to include it, you can add it yourself by modifying `data_labels` in the script and adding `author` to the beginning. While including `author` might help ID3 make better predictions, personally, I'm not interested in correlating the author name. We already have enough of those kinds of tools (albeit, without ID3). I want ID3 to be indifferent about the author and try to make its prediction on a more subtle inputs, which is what it's designed to do.  See my previous Ruby How To posts in: [#radiator](https://steemit.com/created/radiator) [#ruby](https://steemit.com/created/ruby)
author | inertia |
---|---|
permlink | how-to-use-ai-to-find-articles-with-ruby |
category | radiator |
json_metadata | {"tags":["radiator","ruby","steem","howto","machinelearning"],"image":["http://www.steemimg.com/images/2016/08/24/1024px-Ruby_logo.svgdcc20.png"],"links":["https://en.wikipedia.org/wiki/ID3_algorithm","https://steemit.com/steem/@inertia/radiator-steem-ruby-api-client","https://steemit.com/created/radiator","https://steemit.com/created/ruby"],"app":"steemit/0.1","format":"markdown"} |
created | 2017-01-15 02:32:24 |
last_update | 2017-01-15 02:43:51 |
depth | 0 |
children | 4 |
last_payout | 2017-02-15 03:18:21 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 7.449 HBD |
curator_payout_value | 1.120 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 9,855 |
author_reputation | 346,568,901,399,561 |
root_title | "How to Use AI to Find Articles with Ruby" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 0 |
post_id | 2,249,098 |
net_rshares | 37,182,442,059,683 |
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
anonymous | 0 | 600,923,165,637 | 100% | ||
penambang | 0 | 33,287,304,333 | 100% | ||
berkah | 0 | 180,970,733,783 | 100% | ||
hello | 0 | 170,234,962,510 | 100% | ||
world | 0 | 63,916,387,812 | 100% | ||
fufubar1 | 0 | 92,930,120,353 | 100% | ||
tombstone | 0 | 20,411,611,430,104 | 100% | ||
ihashfury | 0 | 719,623,776,230 | 100% | ||
rossco99 | 0 | 379,377,200,214 | 100% | ||
xeroc | 0 | 724,198,958,243 | 100% | ||
steem-id | 0 | 210,389,854,305 | 100% | ||
lovejoy | 0 | 115,999,905,557 | 100% | ||
jason | 0 | 75,436,094,748 | 100% | ||
boatymcboatface | 0 | 226,899,998,255 | 100% | ||
pairmike | 0 | 39,178,385,810 | 100% | ||
pheonike | 0 | 37,107,302,163 | 40% | ||
proctologic | 0 | 39,342,795,322 | 50% | ||
jchch | 0 | 99,031,286,376 | 100% | ||
proctologic2 | 0 | 596,042,592 | 50% | ||
ilanaakoundi | 0 | 83,108,094,506 | 100% | ||
proctologic3 | 0 | 415,979,550 | 50% | ||
dimimp | 0 | 1,096,460,399,074 | 100% | ||
teamsteem | 0 | 458,819,179,655 | 100% | ||
cryptoctopus | 0 | 817,605,166,039 | 75% | ||
nxtblg | 0 | 415,678,254,643 | 100% | ||
daycrypter | 0 | 6,260,785,762 | 100% | ||
kevinwong | 0 | 941,083,494,229 | 100% | ||
murh | 0 | 1,587,159,100 | 13% | ||
mughat | 0 | 18,888,050,943 | 100% | ||
blakemiles84 | 0 | 142,621,534,581 | 100% | ||
dragonslayer109 | 0 | 220,801,317,730 | 100% | ||
theshell | 0 | 37,767,669,379 | 100% | ||
thecryptofiend | 0 | 429,854,703,803 | 100% | ||
justtryme90 | 0 | 53,977,431,455 | 40% | ||
applecrisp | 0 | 996,772,434 | 20% | ||
hisnameisolllie | 0 | 192,058,009,561 | 100% | ||
juanmiguelsalas | 0 | 56,492,794,960 | 100% | ||
kenny-crane | 0 | 116,621,799,491 | 100% | ||
pangur-ban | 0 | 2,104,474,940 | 100% | ||
schro | 0 | 115,303,619,969 | 100% | ||
bitcoinnational | 0 | 2,291,746,249 | 100% | ||
tee-em | 0 | 64,394,151,465 | 100% | ||
michaelx | 0 | 14,714,188,871 | 100% | ||
proglobyte | 0 | 3,081,506,484 | 70% | ||
grandpere | 0 | 42,091,300,705 | 80% | ||
albertogm | 0 | 16,271,471,153 | 100% | ||
crok | 0 | 5,342,676,595 | 100% | ||
tskeene | 0 | 21,400,741,221 | 100% | ||
fyrstikken | 0 | 54,646,699,250 | 2% | ||
skapaneas | 0 | 17,172,938,182 | 100% | ||
bacchist | 0 | 176,761,551,369 | 100% | ||
michaellamden68 | 0 | 2,708,665,329 | 100% | ||
thebatchman | 0 | 1,117,244,521 | 3% | ||
roelandp | 0 | 274,513,827,698 | 100% | ||
slowwalker | 0 | 758,239,228,486 | 100% | ||
vi1son | 0 | 35,827,855,808 | 100% | ||
steem1653 | 0 | 5,454,128,179 | 90% | ||
jesta | 0 | 1,790,533,781,923 | 100% | ||
speda | 0 | 264,959,564,231 | 100% | ||
igster | 0 | 25,228,496,060 | 100% | ||
meesterboom | 0 | 87,727,585,977 | 100% | ||
raymondspeaks | 0 | 5,099,254,211 | 100% | ||
gregm | 0 | 106,889,426,691 | 100% | ||
thebatchman1 | 0 | 69,190,249 | 3% | ||
luisucv34 | 0 | 17,005,269,052 | 100% | ||
inertia | 0 | 189,028,700,940 | 100% | ||
cryptojoy.com | 0 | 1,362,457,260 | 100% | ||
phenom | 0 | 10,722,554,550 | 100% | ||
bones | 0 | 2,823,924,606 | 100% | ||
celsius100 | 0 | 44,770,853,142 | 100% | ||
neroru | 0 | 8,163,062,717 | 100% | ||
seb | 0 | 1,128,714,185 | 100% | ||
raymonjohnstone | 0 | 5,657,389,636 | 100% | ||
marius19 | 0 | 175,927,088,217 | 100% | ||
webdeals | 0 | 19,323,053,190 | 100% | ||
greymass | 0 | 23,453,610,240 | 100% | ||
alexpmorris | 0 | 7,712,325,916 | 100% | ||
jamesbrown | 0 | 214,198,155,901 | 100% | ||
gomeravibz | 0 | 25,642,368,688 | 100% | ||
proglobyte-m1 | 0 | 2,878,349,285 | 42% | ||
tingaling | 0 | 2,407,756,122 | 35% | ||
transhuman | 0 | 1,908,972,346 | 44% | ||
cmp2020 | 0 | 19,968,057,729 | 70% | ||
brendio | 0 | 38,080,497,364 | 80% | ||
asdes | 0 | 7,470,912,335 | 100% | ||
denn | 0 | 13,163,796,074 | 100% | ||
kalimor | 0 | 1,960,919,142 | 100% | ||
kurtbeil | 0 | 69,393,868,450 | 70% | ||
zahar | 0 | 5,048,383,874 | 100% | ||
d3nv3r | 0 | 2,975,349,323 | 100% | ||
bigsambucca | 0 | 647,907,901 | 100% | ||
steemradio | 0 | 889,359,125 | 100% | ||
cmorton | 0 | 2,258,728,206 | 50% | ||
zentat | 0 | 2,817,735,531 | 42% | ||
thewhitewolf | 0 | 2,737,975,633 | 100% | ||
ioc | 0 | 689,056,899,516 | 100% | ||
rubenalexander | 0 | 29,559,384,523 | 100% | ||
virtualgrowth | 0 | 1,762,756,497 | 5% | ||
lamech-m | 0 | 4,695,184,737 | 100% | ||
neptun | 0 | 306,558,364,439 | 100% | ||
jsantana | 0 | 13,144,888,182 | 50% | ||
albensilverberg | 0 | 169,952,486,941 | 100% | ||
sethlinson | 0 | 4,008,586,383 | 20% | ||
hilarski | 0 | 38,414,442,229 | 20% | ||
craigwilliamz | 0 | 5,649,497,766 | 100% | ||
steembriefing | 0 | 3,086,139,385 | 49% | ||
nulliusinverba | 0 | 3,953,383,893 | 100% | ||
ats-david | 0 | 208,194,315,385 | 100% | ||
stephenkendal | 0 | 11,932,014,012 | 100% | ||
krnel | 0 | 649,822,151,651 | 100% | ||
richardcrill | 0 | 71,308,829,729 | 100% | ||
fajrilgooner | 0 | 2,489,832,036 | 100% | ||
titusfrost | 0 | 22,760,618,147 | 100% | ||
maarnio | 0 | 7,537,807,085 | 100% | ||
jsg | 0 | 53,385,241,323 | 100% | ||
tracemayer | 0 | 21,128,649,601 | 100% | ||
littlescribe | 0 | 14,649,094,424 | 100% | ||
burnin | 0 | 13,199,476,911 | 100% | ||
bestoftherest | 0 | 4,644,984,971 | 100% | ||
z3r0d4yz | 0 | 732,001,009 | 100% | ||
bitcoinparadise | 0 | 9,876,660,764 | 100% | ||
ballinconscious | 0 | 8,575,708,056 | 100% | ||
whatsup | 0 | 42,194,309,163 | 100% | ||
funnyman | 0 | 48,507,990,345 | 100% | ||
paxmagnus | 0 | 22,742,651,546 | 100% | ||
voodoolizard | 0 | 4,388,900,327 | 100% | ||
lajulius | 0 | 7,633,712,605 | 90% | ||
thegame | 0 | 344,997,214 | 5% | ||
surpassinggoogle | 0 | 10,605,855,175 | 100% | ||
steembets | 0 | 526,020,342 | 10% | ||
dodders007 | 0 | 27,283,597,780 | 100% | ||
steemint | 0 | 2,441,020,126 | 35% | ||
mgibson | 0 | 7,440,338,685 | 50% | ||
gamer00 | 0 | 90,215,055,138 | 100% | ||
paulocouto | 0 | 785,455,870 | 100% | ||
tomino | 0 | 143,424,208,612 | 100% | ||
frankches | 0 | 4,063,349,170 | 100% | ||
steem-meme | 0 | 1,905,736,649 | 20% | ||
sunscape | 0 | 8,683,688,181 | 20% | ||
supergoodliving | 0 | 30,250,260,661 | 100% | ||
meanpeoplesuck | 0 | 139,723,141 | 100% | ||
ianboil | 0 | 2,479,417,548 | 100% | ||
tablettenformat | 0 | 193,675,219 | 100% | ||
ejhaasteem | 0 | 12,982,413,894 | 100% | ||
sstefan | 0 | 3,480,056,596 | 40% | ||
lovethepeople | 0 | 67,882,339 | 50% | ||
vladtheimpaler | 0 | 2,040,807,821 | 100% | ||
steemland.com | 0 | 525,574,261 | 10% | ||
porco-bastardo | 0 | 65,962,544 | 50% | ||
crowdfundedwhale | 0 | 19,631,028,885 | 50% | ||
trans-juanmi | 0 | 5,528,298,084 | 60% | ||
nigelmarkdias | 0 | 1,374,202,005 | 100% | ||
jfesrom | 0 | 1,450,151,625 | 33% | ||
doodleman | 0 | 13,679,872,455 | 100% | ||
fosho | 0 | 242,412,956 | 40% | ||
teukumukhlis | 0 | 1,520,928,344 | 100% | ||
steemprentice | 0 | 5,643,236,266 | 10% | ||
spbesner | 0 | 6,436,560,722 | 100% | ||
steemperor | 0 | 26,082,169,923 | 100% | ||
steempire | 0 | 77,758,123,533 | 100% | ||
reisman | 0 | 3,123,543,537 | 100% | ||
jumowa | 0 | 3,665,356,250 | 100% | ||
writingamigo | 0 | 20,968,335,092 | 100% | ||
pedrovillegas96 | 0 | 5,606,169,449 | 100% | ||
cardboard | 0 | 3,258,464,853 | 50% | ||
steemsex | 0 | 583,791,164 | 100% | ||
juliosalas | 0 | 798,504,668 | 60% | ||
jcaxo83 | 0 | 1,217,284,063 | 100% | ||
throughtheglass | 0 | 4,510,906,221 | 100% | ||
crowman | 0 | 1,705,160,561 | 100% | ||
tamersameeh | 0 | 492,848,291 | 100% | ||
edje | 0 | 419,747,999 | 100% | ||
cryptocash | 0 | 308,917,128 | 100% | ||
rajatsharma | 0 | 423,284,789 | 100% | ||
rajiv | 0 | 426,576,988 | 100% | ||
kostaslou | 0 | 1,008,348,659 | 100% | ||
zulfahmiaulia | 0 | 163,613,099 | 100% | ||
firesteem | 0 | 497,801,559 | 100% | ||
loosechange | 0 | 345,975,849 | 100% | ||
ades | 0 | 400,600,766 | 100% | ||
mightyenvz | 0 | 50,069,615 | 100% |
Interesting.
author | abit |
---|---|
permlink | re-inertia-how-to-use-ai-to-find-articles-with-ruby-20170115t041715447z |
category | radiator |
json_metadata | {"tags":["radiator"],"app":"steemit/0.1"} |
created | 2017-01-15 04:17:24 |
last_update | 2017-01-15 04:17:24 |
depth | 1 |
children | 0 |
last_payout | 2017-02-15 03:18:21 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 12 |
author_reputation | 141,171,499,037,785 |
root_title | "How to Use AI to Find Articles with Ruby" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 2,249,606 |
net_rshares | 0 |
Cool post. Did you measure corelation between predicted payout and the real one?
author | cardboard |
---|---|
permlink | re-inertia-how-to-use-ai-to-find-articles-with-ruby-20170115t112106073z |
category | radiator |
json_metadata | {"tags":["radiator"],"app":"steemit/0.1"} |
created | 2017-01-15 11:21:15 |
last_update | 2017-01-15 11:21:15 |
depth | 1 |
children | 1 |
last_payout | 2017-02-15 03:18:21 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 80 |
author_reputation | 31,522,757,177,122 |
root_title | "How to Use AI to Find Articles with Ruby" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 2,251,292 |
net_rshares | 0 |
I'm still looking at it. When I originally posted this post, my script said I would earn $17. Then, 5 minutes later, it couldn't make any more predictions about this post. The other samples in this post seem to correlate a little better than chance, on cursory analysis. I'll do a more in-depth post later.
author | inertia |
---|---|
permlink | re-cardboard-re-inertia-how-to-use-ai-to-find-articles-with-ruby-20170115t182627684z |
category | radiator |
json_metadata | {"tags":["radiator"],"app":"steemit/0.1"} |
created | 2017-01-15 18:26:27 |
last_update | 2017-01-15 18:26:27 |
depth | 2 |
children | 0 |
last_payout | 2017-02-15 03:18:21 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 310 |
author_reputation | 346,568,901,399,561 |
root_title | "How to Use AI to Find Articles with Ruby" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 2,254,037 |
net_rshares | 0 |
Very helpful post! Interesting too.
author | mightyenvz |
---|---|
permlink | re-inertia-how-to-use-ai-to-find-articles-with-ruby-20170117t170951537z |
category | radiator |
json_metadata | {"tags":["radiator"],"app":"steemit/0.1"} |
created | 2017-01-17 17:09:51 |
last_update | 2017-01-17 17:09:51 |
depth | 1 |
children | 0 |
last_payout | 2017-02-15 03:18:21 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 35 |
author_reputation | 20,554,580,030 |
root_title | "How to Use AI to Find Articles with Ruby" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 2,271,420 |
net_rshares | 0 |