Viewing a response to: @aximot/re-statistician-re-aximot-mathematical-induction-proving-gauss-sum-formula-right-20180709t134232489z
Yes, this is just like the method you initially mentioned, but without the geometry explanation. Nice post! Similar induction arguments can be made to obtain simple formulas for the sum of numbers squared, cubed, etc. There is a nice body of work around these methods.
author | statistician |
---|---|
permlink | re-aximot-re-statistician-re-aximot-mathematical-induction-proving-gauss-sum-formula-right-20180713t203715129z |
category | steemstem |
json_metadata | {"tags":["steemstem"],"app":"steemit/0.1"} |
created | 2018-07-13 20:37:15 |
last_update | 2018-07-13 20:37:15 |
depth | 3 |
children | 0 |
last_payout | 2018-07-20 20:37:15 |
cashout_time | 1969-12-31 23:59:59 |
total_payout_value | 0.000 HBD |
curator_payout_value | 0.000 HBD |
pending_payout_value | 0.000 HBD |
promoted | 0.000 HBD |
body_length | 271 |
author_reputation | 4,036,062,166 |
root_title | "Mathematical induction: Proving Gauss sum formula right" |
beneficiaries | [] |
max_accepted_payout | 1,000,000.000 HBD |
percent_hbd | 10,000 |
post_id | 64,578,118 |
net_rshares | 4,205,410,780 |
author_curate_reward | "" |
voter | weight | wgt% | rshares | pct | time |
---|---|---|---|---|---|
aximot | 0 | 4,205,410,780 | 100% |