create account

Mathematics - Signals And Systems - Continuous-Time Aperiodic Signals & Fourier Transform by drifter1

View this thread on: hive.blogpeakd.comecency.com
· @drifter1 ·
$117.28
Mathematics - Signals And Systems - Continuous-Time Aperiodic Signals & Fourier Transform
<img src="https://upload.wikimedia.org/wikipedia/commons/e/ea/From_Continuous_To_Discrete_Fourier_Transform.gif">
<p>[<a href="https://commons.wikimedia.org/wiki/File:From_Continuous_To_Discrete_Fourier_Transform.gif">Image1</a>]</p>
<h2>Introduction</h2>
<p>
Hey it's a me again <a href="https://peakd.com/@drifter1">@drifter1</a>!
</p>
<p>
Today we continue with my mathematics series about <strong>Signals and Systems</strong> in order to cover <strong>Continuous-Time Aperiodic Signals & Fourier Transform</strong>.
</p>
<p>
I highly suggest reading the previous article on Periodic Signals...
</p>
<p>
So, without further ado, let's get straight into it!
</p>
<hr>
<h2>Representing Aperiodic Signals</h2>
<p>
In the previous article we covered how periodic signals can be decomposed into a sum of complex exponentials, the Fourier Series, which led into the concept of Fourier Analysis and Synthesis.
Something quite similar can also be achieved for aperiodic signals, where the mathematical equations are known as the Fourier Transform and Inverse Fourier Transform.
The main concept behind these more general synthesis and analysis equations is using periodic signals in order to construct aperiodic signals.
Any aperiodic signal can be represented by a periodic signal that is shifted and added to itself by multiples of some period <em>T<sub>o</sub></em>.
As the period <em>T<sub>o</sub></em> approaches infinity this Fourier series (or linear combination of complex exponentials) is considered a good approximation of the aperiodic signal.
</p>
<p>
Let's consider an aperiodic signal <em>x(t)</em>. A periodic approximation of that signal can be taken as follows:<br><br>
<img src="https://quicklatex.com/cache3/36/ql_80caee73ebc76af92e9192038c53c936_l3.png">
</p>
<p>
In other words, a Fourier series is used to represent the periodic <em>x(t)</em>, which when the period <em>T<sub>o</sub></em> goes to infinity can represent <em>x(t)</em>.
</p>
<p>
The periodic <em>x(t)</em> can be represented with the Fourier Analysis and Synthesis equations that we covered last time:<br><br>
<img src="https://quicklatex.com/cache3/3e/ql_df742e3683187ef1175a18419a54943e_l3.png">
</p>
<hr>
<h2>Representation using Envelopes</h2>
<p>
Representing the coefficients of the Fourier series using this representation isn't that useful, which is why envelopes are used.
Using envelopes, the Fourier series coefficients can be turned into samples of an envelope.
Changing the form of the envelope will allow us to change the shape of the signal over a period, but without being directly dependent on the value of the period.
As such, the Fourier series coefficients are expressed as samples of the envelope which are spaced in frequency.
Therefore, the Fourier transform, in general, takes us from the Time-Domain to the Frequency-Domain.
</p>
<p>
The coefficients are defined as:<br><br>
<img src="https://quicklatex.com/cache3/12/ql_37cb58d694cede74f450078df8fcaa12_l3.png"><br><br>
where <em>T<sub>o</sub> a<sub>k</sub> = X(ω)</em> when <em>ω = k ω<sub>o</sub></em>, and <em>X(ω)</em> is the envelope of <em>T<sub>o</sub> a<sub>k</sub></em>.
</p>
<hr>
<h2>Fourier Transform</h2>
<p>
Using envelopes, the new representation of the Fourier Transform (or analysis equation) is:<br><br>
<img src="https://quicklatex.com/cache3/bd/ql_ee97b1cd50a93d1587334f4383a420bd_l3.png">
</p>
<p>
For example the Fourier Transform turns a unit pulse to:<br><br>
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/5/51/Fourier_unit_pulse.svg/500px-Fourier_unit_pulse.svg.png"><br><br>
[<a href="https://commons.wikimedia.org/wiki/File:Fourier_unit_pulse.svg">Image 2</a>]<br><br>
where the peak of the diagram is the following value:<br><br>
<img src="https://quicklatex.com/cache3/6e/ql_e16a2a8254906ddb4115f75085bbf36e_l3.png"><br><br>
which is also the value of the previous coefficients, <em>a<sub>k</sub></em>, for <em>ω = k ω<sub>o</sub></em>.
</p>
<p>
In general, Fourier Series coefficients equal <em>1/T<sub>o</sub></em> times the samples of the Fourier transform of one period.
</p>
<p>
As <em>T<sub>o</sub></em> increases the samples taken are more dense, leading us to the representation shown in the diagram.
</p>
<hr>
<h2>Inverse Fourier Transform</h2>
<p>
The synthesis part is known as the Inverse Fourier Transform, and mathematically represented as:<br><br>
<img src="https://quicklatex.com/cache3/34/ql_50a1f85f90390f3a5e1f6051e1bb0534_l3.png">
</p>
<p>
In other words, as <em>T<sub>o</sub> &rarr; ∞</em>:<br><br>
<img src="https://quicklatex.com/cache3/8b/ql_ebb2738a70c52ab746406317ed3bfa8b_l3.png">
</p>
<hr>
<h2>Fourier Transform of a Periodic Signal</h2>
<p>
Last, but not least, let's also get into how the Fourier Transform, that was covered today, can be used to represent periodic signals.
For the Fourier series, the coefficients are equal to the <em>a<sub>k</sub></em> 's that we already covered.
But, when talking about the Fourier Transform new coefficients have to be build, which have to be envelopes of some sort.
In other words, a periodic signal <em>x(t)</em> is represented by envelopes, denoted as periodic <em>X(ω)</em>.
</p>
<p>
Let's skip the proof, and just show the equations...
</p>
<p>
The coefficients, <em>X(ω)</em>, and so the analysis part of the Fourier Transform, are given by definition, using the following equation:<br><br>
<img src="https://quicklatex.com/cache3/69/ql_bb0e71aaa96b62bd403b3840b4746d69_l3.png">
</p>
<p>
As such, the synthesis part, which gives us the periodic signal, is:<br><br>
<img src="https://quicklatex.com/cache3/5a/ql_29e469d89fe35a45f2697d83f0ec705a_l3.png">
</p>
<hr>
<h2>RESOURCES:</h2>
<h3>References</h3>
<ol>
  <li><a href="https://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011">Alan Oppenheim. RES.6-007 Signals and Systems. Spring 2011. Massachusetts Institute of Technology: MIT OpenCourseWare, License: Creative Commons BY-NC-SA.</a></li>
</ol>
<h3>Images</h3>
<ol>
  <li><a href="https://commons.wikimedia.org/wiki/File:From_Continuous_To_Discrete_Fourier_Transform.gif">https://commons.wikimedia.org/wiki/File:From_Continuous_To_Discrete_Fourier_Transform.gif</a></li>
  <li><a href="https://commons.wikimedia.org/wiki/File:Fourier_unit_pulse.svg">https://commons.wikimedia.org/wiki/File:Fourier_unit_pulse.svg</a></li>
</ol>
<p>Mathematical equations used in this article were made using <a href="http://quicklatex.com/">quicklatex</a>.</p>
<p>Block diagrams and other visualizations were made using <a href="https://app.diagrams.net/">draw.io</a></p>
<hr>
<h2>Previous articles of the series</h2>
<ul>
  <li><a href="https://peakd.com/hive-196387/@drifter1/mathematics-signals-and-systems-introduction">Introduction</a> &rarr; Signals, Systems</li>
  <li><a href="https://peakd.com/hive-196387/@drifter1/mathematics-signals-and-systems-signal-basics">Signal Basics</a> &rarr; Signal Categorization, Basic Signal Types</li>
  <li><a href="https://peakd.com/hive-196387/@drifter1/mathematics-signals-and-systems-signal-operations-with-examples">Signal Operations with Examples</a> &rarr; Amplitude and Time Operations, Examples</li>
  <li><a href="https://peakd.com/hive-196387/@drifter1/mathematics-signals-and-systems-system-classification-with-examples">System Classification with Examples</a> &rarr; System Classifications and Properties, Examples</li>
  <li><a href="https://peakd.com/hive-196387/@drifter1/mathematics-signals-and-systems-sinusoidal-and-complex-exponential-signals">Sinusoidal and Complex Exponential Signals</a> &rarr; Sinusoidal and Exponential Signals in Continuous and Discrete Time</li>
  <li><a href="https://peakd.com/hive-196387/@drifter1/mathematics-signals-and-systems-lti-system-response-and-convolution">LTI System Response and Convolution</a> &rarr; Linear System Interconnection (Cascade, Parallel, Feedback), Delayed Impulses, Convolution Sum and Integral </li>
  <li><a href="https://peakd.com/hive-196387/@drifter1/mathematics-signals-and-systems-lti-convolution-properties">LTI Convolution Properties</a> &rarr; Commutative, Associative and Distributive Properties of LTI Convolution</li>
  <li><a href="https://peakd.com/hive-196387/@drifter1/mathematics-signals-and-systems-system-representation-in-discrete-time-using-difference-equations">System Representation in Discrete-Time using Difference Equations</a> &rarr; Linear Constant-Coefficient Difference Equations, Block Diagram Representation (Direct Form I and II)</li>
  <li><a href="https://peakd.com/hive-196387/@drifter1/mathematics-signals-and-systems-system-representation-in-continuous-time-using-differential-equations">System Representation in Continuous-Time using Differential Equations</a> &rarr; Linear Constant-Coefficient Differential Equations, Block Diagram Representation (Direct Form I and II)</li>
  <li><a href="https://peakd.com/hive-196387/@drifter1/mathematics-signals-and-systems-continuous-time-periodic-signals-and-fourier-series">Continuous-Time Periodic Signals & Fourier Series</a> &rarr; Input Decomposition, Fourier Series, Analysis and Synthesis</li>
</ul>
<hr>
<h2>Final words | Next up</h2>
<p>And this is actually it for today's post!</p>
<p>Next time we will get into various useful Properties of the Fourier Transform!</p>
<p>See Ya!</p>
<p><img src="https://steemitimages.com/0x0/https://media.giphy.com/media/ybITzMzIyabIs/giphy.gif" width="500" height="333"/></p>
<p>Keep on drifting!</p>
👍  , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and 458 others
properties (23)
authordrifter1
permlinkmathematics-signals-and-systems-continuous-time-aperiodic-signals-and-fourier-transform
categoryhive-196387
json_metadata"{"app":"peakd/2021.03.7","format":"markdown","description":"Representing Aperiodic (and Periodic) Signals in Continuous-Time using the Fourier Transform Equation","tags":["mathematics","science","signals","systems","processing","signal-processing","continuous-time","aperiodic-signals","fourier-transform","fourier"],"users":["drifter1"],"links":["https://commons.wikimedia.org/wiki/File:From_Continuous_To_Discrete_Fourier_Transform.gif","/@drifter1","https://commons.wikimedia.org/wiki/File:Fourier_unit_pulse.svg","https://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011","https://commons.wikimedia.org/wiki/File:From_Continuous_To_Discrete_Fourier_Transform.gif","https://commons.wikimedia.org/wiki/File:Fourier_unit_pulse.svg","http://quicklatex.com/","https://app.diagrams.net/","/hive-196387/@drifter1/mathematics-signals-and-systems-introduction","/hive-196387/@drifter1/mathematics-signals-and-systems-signal-basics"],"image":["https://upload.wikimedia.org/wikipedia/commons/e/ea/From_Continuous_To_Discrete_Fourier_Transform.gif","https://quicklatex.com/cache3/36/ql_80caee73ebc76af92e9192038c53c936_l3.png","https://quicklatex.com/cache3/3e/ql_df742e3683187ef1175a18419a54943e_l3.png","https://quicklatex.com/cache3/12/ql_37cb58d694cede74f450078df8fcaa12_l3.png","https://quicklatex.com/cache3/bd/ql_ee97b1cd50a93d1587334f4383a420bd_l3.png","https://upload.wikimedia.org/wikipedia/commons/thumb/5/51/Fourier_unit_pulse.svg/500px-Fourier_unit_pulse.svg.png","https://quicklatex.com/cache3/6e/ql_e16a2a8254906ddb4115f75085bbf36e_l3.png","https://quicklatex.com/cache3/34/ql_50a1f85f90390f3a5e1f6051e1bb0534_l3.png","https://quicklatex.com/cache3/8b/ql_ebb2738a70c52ab746406317ed3bfa8b_l3.png","https://quicklatex.com/cache3/69/ql_bb0e71aaa96b62bd403b3840b4746d69_l3.png","https://quicklatex.com/cache3/5a/ql_29e469d89fe35a45f2697d83f0ec705a_l3.png","https://steemitimages.com/0x0/https://media.giphy.com/media/ybITzMzIyabIs/giphy.gif"]}"
created2021-03-22 10:29:06
last_update2021-03-22 10:29:06
depth0
children2
last_payout2021-03-29 10:29:06
cashout_time1969-12-31 23:59:59
total_payout_value58.780 HBD
curator_payout_value58.503 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length9,427
author_reputation98,202,866,830,354
root_title"Mathematics - Signals And Systems - Continuous-Time Aperiodic Signals & Fourier Transform"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id102,523,727
net_rshares129,340,813,475,315
author_curate_reward""
vote details (522)
@comandoyeya ·
$0.02
Wow exelente publicacion, muy instruct iva, gracias por compartir
👍  
properties (23)
authorcomandoyeya
permlinkqqdybc
categoryhive-196387
json_metadata{"app":"hiveblog/0.1"}
created2021-03-22 19:33:12
last_update2021-03-22 19:33:12
depth1
children0
last_payout2021-03-29 19:33:12
cashout_time1969-12-31 23:59:59
total_payout_value0.011 HBD
curator_payout_value0.011 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length65
author_reputation573,583,519,635,099
root_title"Mathematics - Signals And Systems - Continuous-Time Aperiodic Signals & Fourier Transform"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id102,533,188
net_rshares37,978,087,968
author_curate_reward""
vote details (1)
@steemstem ·
$0.02
re-drifter1-mathematics-signals-and-systems-continuous-time-aperiodic-signals-and-fourier-transform-20210323t062932095z
<div class='text-justify'> <div class='pull-left'>
 <img src='https://stem.openhive.network/images/stemsocialsupport7.png'> </div>

Thanks for your contribution to the STEMsocial community. Feel free to join us on discord to get to know the rest of us!

Please consider <a href="https://hivesigner.com/sign/update-proposal-votes?proposal_ids=%5B91%5D&amp;approve=true">supporting our funding proposal</a>, <a href="https://hivesigner.com/sign/account_witness_vote?approve=1&witness=stem.witness">approving our witness</a> (@stem.witness) or delegating to the @stemsocial account (for some ROI).

Please consider using the <a href='https://stem.openhive.network'>STEMsocial app</a> app and including @stemsocial as a beneficiary to get a stronger support.&nbsp;<br />&nbsp;<br />
👍  
properties (23)
authorsteemstem
permlinkre-drifter1-mathematics-signals-and-systems-continuous-time-aperiodic-signals-and-fourier-transform-20210323t062932095z
categoryhive-196387
json_metadata{"app":"stemsocial"}
created2021-03-23 06:29:33
last_update2021-03-23 06:29:33
depth1
children0
last_payout2021-03-30 06:29:33
cashout_time1969-12-31 23:59:59
total_payout_value0.011 HBD
curator_payout_value0.012 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length778
author_reputation262,017,435,115,313
root_title"Mathematics - Signals And Systems - Continuous-Time Aperiodic Signals & Fourier Transform"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id102,542,072
net_rshares38,753,617,674
author_curate_reward""
vote details (1)