create account

[Math Talk #4] Pigeonhole Principle and Applications [2] by mathsolver

View this thread on: hive.blogpeakd.comecency.com
· @mathsolver · (edited)
$21.71
[Math Talk #4] Pigeonhole Principle and Applications [2]
# Pigeonhole Principle and Miscellaneous Applications (2)
**[1]**
<center> <img src = "https://i.imgsafe.org/6d/6dbb3ad7b5.gif" height = "300" width = "400"/> </center>

Continuing our discussion of pigeonhole principle from [Math Talk #3](https://steemit.com/math/@mathsolver/math-talk-3-pigeonhole-principle-and-its-usage), I will post some miscellaneous applications of Pigeonhole principle. 

## 1. Partitioning the subset of Natural numbers

### 1-1. Concerning the set <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;2,&space;...,&space;2n&space;\right\}" title="\left\{ 1, 2, ..., 2n \right\}" align = "center"/> 

**Problem 1.** - **[2]**
Given any <img src="http://latex.codecogs.com/gif.latex?n&plus;1" title="n+1" align = "center"/> integers among  <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;2,&space;...,&space;2n&space;\right\}" title="\left\{ 1, 2, ..., 2n \right\}" align = "center"/>, show that two of them are relatively prime. Show that the result is false if we choose <img src="http://latex.codecogs.com/gif.latex?n" title="n" /> integers. 

**Solution 1.** 
Partition the set <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;2,&space;...,&space;2n&space;\right\}" title="\left\{ 1, 2, ..., 2n \right\}" align = "center"/>  into  <img src="http://latex.codecogs.com/gif.latex?n" title="n" /> subsets of the form

<center> <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;2&space;\right\},&space;\left\{&space;3,&space;4&space;\right\},&space;...,&space;\left\{&space;2n-1,&space;2n&space;\right\}" title="\left\{ 1, 2 \right\}, \left\{ 3, 4 \right\}, ..., \left\{ 2n-1, 2n \right\}" /> </center>

Then by Pigeonhole principle, choosing <img src="http://latex.codecogs.com/gif.latex?n&plus;1" title="n+1" align = "center"/> integers forces us to pick two (i.e. all ) elements in single partition. Since consecutive integers are relatively prime, there is at least one pair of integers which are relatively prime. 

If the number reduces to <img src="http://latex.codecogs.com/gif.latex?n" title="n" />, then clearly choosing <img src="http://latex.codecogs.com/gif.latex?\left\{&space;2,&space;4,&space;6,&space;...,&space;2n&space;\right\}" title="\left\{ 2, 4, 6, ..., 2n \right\}" align = "center"/> (the set of even numbers) will be the counterexample. 

---
**Problem 2.** - **[3]**
Given any <img src="http://latex.codecogs.com/gif.latex?n&plus;1" title="n+1" align = "center"/> integers among  <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;2,&space;...,&space;2n&space;\right\}" title="\left\{ 1, 2, ..., 2n \right\}" align = "center"/>, show that one of them is divisible by another. Show that the result is false if we choose <img src="http://latex.codecogs.com/gif.latex?n" title="n" /> integers.

**Solution 2.**
By prime factorizing theorem for positive integers, every positive integers can be expressed as 

<center> <img src="http://latex.codecogs.com/gif.latex?k&space;=&space;2^m&space;\times&space;\ell" title="k = 2^m \times \ell" /> </center>

where <img src="http://latex.codecogs.com/gif.latex?m&space;\geq&space;0" title="m \geq 0" align = "center"/> and <img src="http://latex.codecogs.com/gif.latex?\ell" title="\ell" /> is odd. First, make <img src="http://latex.codecogs.com/gif.latex?n" title="n" /> pigeonholes as follows. 

<center> <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1&space;\right\},&space;\left\{&space;3&space;\right\},&space;\left\{&space;5&space;\right\},&space;...,&space;\left\{&space;2n-3&space;\right\},&space;\left\{&space;2n-1&space;\right\}" title="\left\{ 1 \right\}, \left\{ 3 \right\}, \left\{ 5 \right\}, ..., \left\{ 2n-3 \right\}, \left\{ 2n-1 \right\}" /> </center>

In other words, every odd number less than <img src="http://latex.codecogs.com/gif.latex?2n" title="2n" /> is partitioned into singleton sets. Now, 

<center> <img src="http://latex.codecogs.com/gif.latex?k&space;=&space;2^{m}&space;\times&space;\ell&space;\leq&space;2n&space;\implies&space;\ell&space;\leq&space;2n" title="k = 2^{m} \times \ell \leq 2n \implies \ell \leq 2n" /> </center>

since <img src="http://latex.codecogs.com/gif.latex?m&space;\geq&space;0" title="m \geq 0" align = "center"/> . Since there are <img src="http://latex.codecogs.com/gif.latex?n" title="n" /> distinct odd numbers, among <img src="http://latex.codecogs.com/gif.latex?n&plus;1" title="n+1" align = "center"/> numbers, there should exist two <img src="http://latex.codecogs.com/gif.latex?k_1,&space;k_2" title="k_1, k_2" align = "center"/> having same <img src="http://latex.codecogs.com/gif.latex?\ell" title="\ell" align = "center"/> by pigeonhole principle. Then we can express as 

<center> <img src="http://latex.codecogs.com/gif.latex?k_1&space;=&space;2^{m_1}&space;\times&space;\ell,\&space;k_2&space;=&space;2^{m_2}&space;\times&space;\ell&space;\implies&space;k_1&space;|&space;k_2&space;\text{&space;or&space;}&space;k_2&space;|&space;k_1" title="k_1 = 2^{m_1} \times \ell,\ k_2 = 2^{m_2} \times \ell \implies k_1 | k_2 \text{ or } k_2 | k_1" /> </center>

depending on the magnitude of <img src="http://latex.codecogs.com/gif.latex?m_1,&space;m_2" title="m_1, m_2" align = "center" />. 

If the number reduces to <img src="http://latex.codecogs.com/gif.latex?n" title="n" />, then clearly the set of all odd numbers <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;3,&space;5,...,&space;2n-1&space;\right\}" title="\left\{ 1, 3, 5,..., 2n-1 \right\}" align = "center"/> would be the counterexample. 

---

**Problem 3.** - **[4]**
Let <img src="http://latex.codecogs.com/gif.latex?a_1&space;<&space;a_2&space;<&space;...&space;<&space;a_n" title="a_1 < a_2 < ... < a_n" align = "center"/> and <img src="http://latex.codecogs.com/gif.latex?b_1&space;>&space;b_2&space;>&space;...&space;>&space;b_n" title="b_1 > b_2 > ... > b_n" align = "center"/> where <img src="http://latex.codecogs.com/gif.latex?a_1,...,a_n,&space;b_1,...,b_n" title="a_1,...,a_n, b_1,...,b_n" align = "center"/> are all distinct elements in  <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;2,&space;...,&space;2n&space;\right\}" title="\left\{ 1, 2, ..., 2n \right\}" align = "center"/>. Prove that 

<center> <img src="http://latex.codecogs.com/gif.latex?\sum_{i=1}^{n}&space;|a_i&space;-&space;b_i|&space;=&space;n^2" title="\sum_{i=1}^{n} |a_i - b_i| = n^2" /> </center>

**Solution 3.** 
First, partition the whole set into two disjoint subsets

<center> <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;2,&space;...,&space;n&space;\right\},&space;\left\{&space;n&plus;1,&space;n&plus;2,&space;...,&space;2n&space;\right\}" title="\left\{ 1, 2, ..., n \right\}, \left\{ n+1, n+2, ..., 2n \right\}" /> </center> 


Now fix index <img src="http://latex.codecogs.com/gif.latex?i" title="i" /> , and consider <img src="http://latex.codecogs.com/gif.latex?a_i,&space;b_i" title="a_i, b_i" align = "center"/> . <img src="http://latex.codecogs.com/gif.latex?a_1,&space;a_2,&space;...,&space;a_{i-1},&space;b_{i&plus;1},&space;...,&space;b_n" title="a_1, a_2, ..., a_{i-1}, b_{i+1}, ..., b_n" align = "center"/> are all smaller than <img src="http://latex.codecogs.com/gif.latex?\max(a_i,&space;b_i)" title="\max(a_i, b_i)" align = "center"/> . So at least 

<center> <img src="http://latex.codecogs.com/gif.latex?\max(a_i,&space;b_i)&space;>&space;(i&space;-&space;1)&space;&plus;&space;(n&space;-&space;i)&space;&plus;&space;1&space;=&space;n&space;-&space;1&space;&plus;&space;1&space;=&space;n&space;\implies&space;\max(a_i,&space;b_i)&space;\geq&space;n&space;&plus;&space;1" title="\max(a_i, b_i) > (i - 1) + (n - i) + 1 = n - 1 + 1 = n \implies \max(a_i, b_i) \geq n + 1" /> </center> 

So <img src="http://latex.codecogs.com/gif.latex?\max(a_1,&space;b_1),&space;\max(a_2,&space;b_2),&space;...,&space;\max(a_n,&space;b_n)" title="\max(a_1, b_1), \max(a_2, b_2), ..., \max(a_n, b_n)" align = "center"/> are all elements of the latter set <img src="http://latex.codecogs.com/gif.latex?\left\{&space;n&plus;1,&space;...,&space;2n&space;\right\}" title="\left\{ n+1, ..., 2n \right\}" align = "center" /> . Since 

<center> <img src="http://latex.codecogs.com/gif.latex?\max(a_i,&space;b_i)&space;=&space;\max(a_j,&space;b_j)&space;\implies&space;i&space;=&space;j" title="\max(a_i, b_i) = \max(a_j, b_j) \implies i = j" /> </center>

those <img src="http://latex.codecogs.com/gif.latex?n" title="n" /> elements of the form <img src="http://latex.codecogs.com/gif.latex?\max(a_i,&space;b_i)" title="\max(a_i, b_i)" align = "center" /> are all distinct, so that by Pigeonhole principle, they occupy exactly one element in <img src="http://latex.codecogs.com/gif.latex?\left\{&space;n&plus;1,&space;...,&space;2n&space;\right\}" title="\left\{ n+1, ..., 2n \right\}" align = "center" /> . 

Since <img src="http://latex.codecogs.com/gif.latex?\min(a_i,&space;b_i)&space;<&space;\max(a_i,&space;b_i)" title="\min(a_i, b_i) < \max(a_i, b_i)" align = "center"/> and all  <img src="http://latex.codecogs.com/gif.latex?n" title="n" /> elements of the form <img src="http://latex.codecogs.com/gif.latex?\min(a_i,&space;b_i)" title="\max(a_i, b_i)" align = "center" /> are distinct, by Pigeonhole principle, they occupy exactly one element in <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;2,&space;...,&space;n&space;\right\}" title="\left\{ 1, 2, ..., n \right\}" align = "center"/>. So 

<center> <img src="http://latex.codecogs.com/gif.latex?\begin{align*}&space;\sum_{i=1}^{n}&space;|a_i&space;-&space;b_i|&space;&=&space;\sum_{i=1}^{n}&space;\left[&space;\max(a_i,&space;b_i)&space;-&space;\min(a_i,&space;b_i)&space;\right]&space;\\&space;&=&space;\sum_{i=1}^{n}&space;\max(a_i,&space;b_i)&space;-&space;\sum_{i=1}^{n}&space;\min(a_i,&space;b_i)&space;\\&space;&=&space;(n&plus;1&space;&plus;&space;n&plus;2&space;&plus;&space;...&space;&plus;2n)&space;-&space;(1&plus;2&plus;...&space;n)&space;\\&space;&=&space;n^2&space;\end{align*}" title="\begin{align*} \sum_{i=1}^{n} |a_i - b_i| &= \sum_{i=1}^{n} \left[ \max(a_i, b_i) - \min(a_i, b_i) \right] \\ &= \sum_{i=1}^{n} \max(a_i, b_i) - \sum_{i=1}^{n} \min(a_i, b_i) \\ &= (n+1 + n+2 + ... +2n) - (1+2+... n) \\ &= n^2 \end{align*}" /> </center> 

## 2. Erd&ouml;s - Szerkes Theorem
The original theorem is as follows. 

**Theorem.**
For given <img src="http://latex.codecogs.com/gif.latex?r,&space;s&space;\in&space;\mathbb{N}" title="r, s \in \mathbb{N}" align = "center"/> any sequence of distinct real numbers with length at least <img src="http://latex.codecogs.com/gif.latex?(r-1)(s-1)&space;&plus;&space;1" title="(r-1)(s-1) + 1" align = "center"/> contains a **monotonically increasing** subsequence of length r **or** a **monotonically decreasing** subsequence of length s. 

**Proof.** - **[5]**
First denote <img src="http://latex.codecogs.com/gif.latex?(r-1)(s-1)&space;&plus;&space;1" title="(r-1)(s-1) + 1" align = "center"/> as <img src="http://latex.codecogs.com/gif.latex?n_1,&space;n_2,&space;...,&space;n_{(r-1)(s-1)&plus;1}" title="n_1, n_2, ..., n_{(r-1)(s-1)+1}" align = "center"/> . Also for each <img src="http://latex.codecogs.com/gif.latex?n_i" title="n_i" align = "center"/>, we assign a pair <img src="http://latex.codecogs.com/gif.latex?(a_i,&space;b_i)" title="(a_i, b_i)" align = "center"/> such that 

<center> <img src="http://latex.codecogs.com/gif.latex?\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;n_i&space;\mapsto&space;(a_i,&space;b_i)\\&space;a_i:=&space;\text{length&space;of&space;longest&space;monotonically&space;increasing&space;subsequence&space;ending&space;in&space;}n_i\\&space;b_i:=&space;\text{length&space;of&space;longest&space;monotonically&space;decreasing&space;subsequence&space;ending&space;in&space;}n_i" title="\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n_i \mapsto (a_i, b_i)\\ a_i:= \text{length of longest monotonically increasing subsequence ending in }n_i\\ b_i:= \text{length of longest monotonically decreasing subsequence ending in }n_i" /> </center>

Now we seek some properties of this pair. Since all numbers are distinct, 

<center> <img src="http://latex.codecogs.com/gif.latex?i&space;<&space;j\&space;\land&space;n_i&space;\leq&space;n_j&space;\implies&space;a_i&space;<&space;a_j" title="i < j\ \land n_i \leq n_j \implies a_i < a_j" /> </center>

as well as 

<center> <img src="http://latex.codecogs.com/gif.latex?i&space;<&space;j\&space;\land&space;n_i&space;\geq&space;n_j&space;\implies&space;b_i&space;>&space;b_j" title="i < j\ \land n_i \geq n_j \implies b_i > b_j" /> </center>

So, <img src="http://latex.codecogs.com/gif.latex?(a_i,&space;b_i)&space;\neq&space;(a_j,&space;b_j)" title="(a_i, b_i) \neq (a_j, b_j)" align = "center"/> for any case. 

If number of possible values of <img src="http://latex.codecogs.com/gif.latex?a_i" title="a_i" align = "center"/> is less than <img src="http://latex.codecogs.com/gif.latex?r" title="r" /> and number of possible values of <img src="http://latex.codecogs.com/gif.latex?b_i" title="b_i" align = "center"/> is less than <img src="http://latex.codecogs.com/gif.latex?s" title="s" />, then in total, there will be at most <img src="http://latex.codecogs.com/gif.latex?(r-1)(s-1)" title="rs" align = "center"/> number of <img src="http://latex.codecogs.com/gif.latex?(a_i,&space;b_i)" title="(a_i, b_i)" align = "center"/> pairs. This contradicts to the fact that all pairs are distinct (which in total <img src="http://latex.codecogs.com/gif.latex?(r-1)(s-1)&space;&plus;&space;1" title="(r-1)(s-1) + 1" align = "center"/>), so by **Pigeonhole principle**, either 

<center> <img src="http://latex.codecogs.com/gif.latex?a_i&space;\geq&space;r" title="a_i \geq r" /> </center>

or

<center> <img src="http://latex.codecogs.com/gif.latex?b_i&space;\geq&space;s" title="b_i \geq s" /> </center>

for some index <img src="http://latex.codecogs.com/gif.latex?i" title="i" />. 

## 2-1. Visualization of Theorem
Let's say we have <img src="http://latex.codecogs.com/gif.latex?M=(r-1)(s-1)&space;&plus;&space;1" title="(r-1)(s-1) + 1" align = "center"/> distinct real numbers,

<center> <img src="http://latex.codecogs.com/gif.latex?n_1,&space;n_2,&space;...,&space;n_M" title="n_1, n_2, ..., n_M" /> </center>

Now in 2D <img src="http://latex.codecogs.com/gif.latex?\mathbb{R}^2" title="\mathbb{R}^2" /> plane, math each number <img src="http://latex.codecogs.com/gif.latex?n_i" title="n_i" align = "center"/> to the point <img src="http://latex.codecogs.com/gif.latex?n_i&space;\mapsto&space;(i,&space;n_i)" title="n_i \mapsto (i, n_i)" align = "center"/> . Then we can always find a polygonal path either 

1. length <img src="http://latex.codecogs.com/gif.latex?r-1" title="r-1" /> and of positive slope. (Going upward right) 

2. length <img src="http://latex.codecogs.com/gif.latex?s-1" title="s-1" /> and of negative slope. (Going downaward right)

### Example

The case when <img src="http://latex.codecogs.com/gif.latex?r&space;=&space;s&space;=&space;5" title="r = s = 9" /> .  Randomly generate <img src="http://latex.codecogs.com/gif.latex?(r-1)(s-1)&space;&plus;&space;1&space;=&space;17" title="(r-1)(s-1) + 1 = 37" align = "center"/> points.
**[6]**
<center >
<img src = "https://i.imgsafe.org/6d/6da41b2732.png" /> </center> 

We can see that it consists of 5 <img src="http://latex.codecogs.com/gif.latex?=r" title="=r" /> points, which is of positive slope polygon path. 

## 3. Conclusion

Pigeonhole Principle can be a powerful tool in discrete mathematics and in any field concerning some counting. 

## 4. Citations
[1] http://cpptruths.blogspot.com/2014/05/the-pigeonhole-principle-in-c.html (only image is used)

[2] http://web.archive.org/web/20120124185755/http://math.mit.edu/~rstan/a34/pigeon.pdf Problem 7

[3] http://web.archive.org/web/20120124185755/http://math.mit.edu/~rstan/a34/pigeon.pdf Problem 8

[4] http://web.archive.org/web/20120124185755/http://math.mit.edu/~rstan/a34/pigeon.pdf Problem 13

[5]  Seidenberg, A. (1959), "A simple proof of a theorem of Erdős and Szekeres" (PDF), Journal of the London Mathematical Society, 34: 352, doi:10.1112/jlms/s1-34.3.352.

[6] https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Szekeres_theorem (only image is used)

---
**Solutions to the problems are made by myself. **
👍  , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and 388 others
properties (23)
authormathsolver
permlinkmath-talk-4-pigeonhole-principles-and-applications-2
categorymath
json_metadata{"tags":["math","mathematics","science","steemstem","mathsolver"],"image":["https://i.imgsafe.org/6d/6dbb3ad7b5.gif","http://latex.codecogs.com/gif.latex?\\left\\{&space;1,&space;2,&space;...,&space;2n&space;\\right\\}","http://latex.codecogs.com/gif.latex?n&plus;1","http://latex.codecogs.com/gif.latex?n","http://latex.codecogs.com/gif.latex?\\left\\{&space;1,&space;2&space;\\right\\},&space;\\left\\{&space;3,&space;4&space;\\right\\},&space;...,&space;\\left\\{&space;2n-1,&space;2n&space;\\right\\}","http://latex.codecogs.com/gif.latex?\\left\\{&space;2,&space;4,&space;6,&space;...,&space;2n&space;\\right\\}","http://latex.codecogs.com/gif.latex?k&space;=&space;2^m&space;\\times&space;\\ell","http://latex.codecogs.com/gif.latex?m&space;\\geq&space;0","http://latex.codecogs.com/gif.latex?\\ell","http://latex.codecogs.com/gif.latex?\\left\\{&space;1&space;\\right\\},&space;\\left\\{&space;3&space;\\right\\},&space;\\left\\{&space;5&space;\\right\\},&space;...,&space;\\left\\{&space;2n-3&space;\\right\\},&space;\\left\\{&space;2n-1&space;\\right\\}","http://latex.codecogs.com/gif.latex?2n","http://latex.codecogs.com/gif.latex?k&space;=&space;2^{m}&space;\\times&space;\\ell&space;\\leq&space;2n&space;\\implies&space;\\ell&space;\\leq&space;2n","http://latex.codecogs.com/gif.latex?k_1,&space;k_2","http://latex.codecogs.com/gif.latex?k_1&space;=&space;2^{m_1}&space;\\times&space;\\ell,\\&space;k_2&space;=&space;2^{m_2}&space;\\times&space;\\ell&space;\\implies&space;k_1&space;|&space;k_2&space;\\text{&space;or&space;}&space;k_2&space;|&space;k_1","http://latex.codecogs.com/gif.latex?m_1,&space;m_2","http://latex.codecogs.com/gif.latex?\\left\\{&space;1,&space;3,&space;5,...,&space;2n-1&space;\\right\\}","http://latex.codecogs.com/gif.latex?a_1&space;<&space;a_2&space;<&space;...&space;<&space;a_n","http://latex.codecogs.com/gif.latex?b_1&space;>&space;b_2&space;>&space;...&space;>&space;b_n","http://latex.codecogs.com/gif.latex?a_1,...,a_n,&space;b_1,...,b_n","http://latex.codecogs.com/gif.latex?\\sum_{i=1}^{n}&space;|a_i&space;-&space;b_i|&space;=&space;n^2","http://latex.codecogs.com/gif.latex?\\left\\{&space;1,&space;2,&space;...,&space;n&space;\\right\\},&space;\\left\\{&space;n&plus;1,&space;n&plus;2,&space;...,&space;2n&space;\\right\\}","http://latex.codecogs.com/gif.latex?i","http://latex.codecogs.com/gif.latex?a_i,&space;b_i","http://latex.codecogs.com/gif.latex?a_1,&space;a_2,&space;...,&space;a_{i-1},&space;b_{i&plus;1},&space;...,&space;b_n","http://latex.codecogs.com/gif.latex?\\max(a_i,&space;b_i)","http://latex.codecogs.com/gif.latex?\\max(a_i,&space;b_i)&space;>&space;(i&space;-&space;1)&space;&plus;&space;(n&space;-&space;i)&space;&plus;&space;1&space;=&space;n&space;-&space;1&space;&plus;&space;1&space;=&space;n&space;\\implies&space;\\max(a_i,&space;b_i)&space;\\geq&space;n&space;&plus;&space;1","http://latex.codecogs.com/gif.latex?\\max(a_1,&space;b_1),&space;\\max(a_2,&space;b_2),&space;...,&space;\\max(a_n,&space;b_n)","http://latex.codecogs.com/gif.latex?\\left\\{&space;n&plus;1,&space;...,&space;2n&space;\\right\\}","http://latex.codecogs.com/gif.latex?\\max(a_i,&space;b_i)&space;=&space;\\max(a_j,&space;b_j)&space;\\implies&space;i&space;=&space;j","http://latex.codecogs.com/gif.latex?\\min(a_i,&space;b_i)&space;<&space;\\max(a_i,&space;b_i)","http://latex.codecogs.com/gif.latex?\\min(a_i,&space;b_i)","http://latex.codecogs.com/gif.latex?\\left\\{&space;1,&space;2,&space;...,&space;n&space;\\right\\}","http://latex.codecogs.com/gif.latex?\\begin{align*}&space;\\sum_{i=1}^{n}&space;|a_i&space;-&space;b_i|&space;&=&space;\\sum_{i=1}^{n}&space;\\left[&space;\\max(a_i,&space;b_i)&space;-&space;\\min(a_i,&space;b_i)&space;\\right]&space;\\\\&space;&=&space;\\sum_{i=1}^{n}&space;\\max(a_i,&space;b_i)&space;-&space;\\sum_{i=1}^{n}&space;\\min(a_i,&space;b_i)&space;\\\\&space;&=&space;(n&plus;1&space;&plus;&space;n&plus;2&space;&plus;&space;...&space;&plus;2n)&space;-&space;(1&plus;2&plus;...&space;n)&space;\\\\&space;&=&space;n^2&space;\\end{align*}","http://latex.codecogs.com/gif.latex?r,&space;s&space;\\in&space;\\mathbb{N}","http://latex.codecogs.com/gif.latex?(r-1)(s-1)&space;&plus;&space;1","http://latex.codecogs.com/gif.latex?n_1,&space;n_2,&space;...,&space;n_{(r-1)(s-1)&plus;1}","http://latex.codecogs.com/gif.latex?n_i","http://latex.codecogs.com/gif.latex?(a_i,&space;b_i)","http://latex.codecogs.com/gif.latex?\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;\\&space;n_i&space;\\mapsto&space;(a_i,&space;b_i)\\\\&space;a_i:=&space;\\text{length&space;of&space;longest&space;monotonically&space;increasing&space;subsequence&space;ending&space;in&space;}n_i\\\\&space;b_i:=&space;\\text{length&space;of&space;longest&space;monotonically&space;decreasing&space;subsequence&space;ending&space;in&space;}n_i","http://latex.codecogs.com/gif.latex?i&space;<&space;j\\&space;\\land&space;n_i&space;\\leq&space;n_j&space;\\implies&space;a_i&space;<&space;a_j","http://latex.codecogs.com/gif.latex?i&space;<&space;j\\&space;\\land&space;n_i&space;\\geq&space;n_j&space;\\implies&space;b_i&space;>&space;b_j","http://latex.codecogs.com/gif.latex?(a_i,&space;b_i)&space;\\neq&space;(a_j,&space;b_j)","http://latex.codecogs.com/gif.latex?a_i","http://latex.codecogs.com/gif.latex?r","http://latex.codecogs.com/gif.latex?b_i","http://latex.codecogs.com/gif.latex?s","http://latex.codecogs.com/gif.latex?(r-1)(s-1)","http://latex.codecogs.com/gif.latex?a_i&space;\\geq&space;r","http://latex.codecogs.com/gif.latex?b_i&space;\\geq&space;s","http://latex.codecogs.com/gif.latex?M=(r-1)(s-1)&space;&plus;&space;1","http://latex.codecogs.com/gif.latex?n_1,&space;n_2,&space;...,&space;n_M","http://latex.codecogs.com/gif.latex?\\mathbb{R}^2","http://latex.codecogs.com/gif.latex?n_i&space;\\mapsto&space;(i,&space;n_i)","http://latex.codecogs.com/gif.latex?r-1","http://latex.codecogs.com/gif.latex?s-1","http://latex.codecogs.com/gif.latex?r&space;=&space;s&space;=&space;5","http://latex.codecogs.com/gif.latex?(r-1)(s-1)&space;&plus;&space;1&space;=&space;17","https://i.imgsafe.org/6d/6da41b2732.png","http://latex.codecogs.com/gif.latex?=r"],"links":["https://steemit.com/math/@mathsolver/math-talk-3-pigeonhole-principle-and-its-usage","http://cpptruths.blogspot.com/2014/05/the-pigeonhole-principle-in-c.html","http://web.archive.org/web/20120124185755/http://math.mit.edu/~rstan/a34/pigeon.pdf","https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Szekeres_theorem"],"app":"steemit/0.1","format":"markdown"}
created2018-08-17 14:34:00
last_update2018-08-17 14:34:15
depth0
children7
last_payout2018-08-24 14:34:00
cashout_time1969-12-31 23:59:59
total_payout_value16.485 HBD
curator_payout_value5.229 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length16,656
author_reputation1,337,981,311,807
root_title"[Math Talk #4] Pigeonhole Principle and Applications [2]"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id68,506,260
net_rshares16,590,263,261,177
author_curate_reward""
vote details (452)
@alexdory ·
Well done! 
Don't forget to also engage with other authors as this is what builds the community. The best way to advertise your account in the beginning is to actually be a smart and considerate person. 
Perhaps add a few words to the account description. That's your business card! 
Thanks for joining us and I am here for help and for any question you have!
Nice country you have, I hope I will visit it soon, was in Thailand in December but I'd love to visit Korea or Japan soon. 
Cheers!

https://media.discordapp.net/attachments/424101899298537472/424203505692049432/Engagement_Officer.png?width=400&height=183
properties (22)
authoralexdory
permlinkre-mathsolver-math-talk-4-pigeonhole-principles-and-applications-2-20180820t084154796z
categorymath
json_metadata{"tags":["math"],"image":["https://media.discordapp.net/attachments/424101899298537472/424203505692049432/Engagement_Officer.png?width=400&amp;height=183"],"app":"steemit/0.1"}
created2018-08-20 08:41:48
last_update2018-08-20 08:41:48
depth1
children1
last_payout2018-08-27 08:41:48
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length615
author_reputation6,862,980,134,251
root_title"[Math Talk #4] Pigeonhole Principle and Applications [2]"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id68,781,960
net_rshares0
@mathsolver ·
Thanks a lot SteemSTem! I will add some descriptions on my account profile.
properties (22)
authormathsolver
permlinkre-alexdory-re-mathsolver-math-talk-4-pigeonhole-principles-and-applications-2-20180820t130229775z
categorymath
json_metadata{"tags":["math"],"app":"steemit/0.1"}
created2018-08-20 13:02:30
last_update2018-08-20 13:02:30
depth2
children0
last_payout2018-08-27 13:02:30
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length75
author_reputation1,337,981,311,807
root_title"[Math Talk #4] Pigeonhole Principle and Applications [2]"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id68,801,604
net_rshares0
@alexs1320 ·
$0.06
Nice! Visualization of Theorem paragraph is just a beauty.

For non-math readers, [relatively prime](http://mathworld.wolfram.com/RelativelyPrime.html).
👍  
properties (23)
authoralexs1320
permlinkre-mathsolver-math-talk-4-pigeonhole-principles-and-applications-2-20180818t063857625z
categorymath
json_metadata{"tags":["math"],"links":["http://mathworld.wolfram.com/RelativelyPrime.html"],"app":"steemit/0.1"}
created2018-08-18 06:39:03
last_update2018-08-18 06:39:03
depth1
children0
last_payout2018-08-25 06:39:03
cashout_time1969-12-31 23:59:59
total_payout_value0.046 HBD
curator_payout_value0.014 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length152
author_reputation150,945,165,388,638
root_title"[Math Talk #4] Pigeonhole Principle and Applications [2]"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id68,573,530
net_rshares46,417,919,903
author_curate_reward""
vote details (1)
@arcange ·
Congratulations @mathsolver!
Your post was mentioned in the [Steemit Hit Parade for newcomers](https://steemit.com/hit-parade/@arcange/daily-hit-parade-for-newcomers-20180817) in the following category:

* Pending payout - Ranked 5 with $ 22,01

I also upvoted your post to increase its reward
If you like my work to promote newcomers and give them more visibility on Steemit, consider to [vote for my witness](https://v2.steemconnect.com/sign/account-witness-vote?witness=arcange&approve=1)!
properties (22)
authorarcange
permlinkre-math-talk-4-pigeonhole-principles-and-applications-2-20180817t191642000z
categorymath
json_metadata""
created2018-08-18 17:20:42
last_update2018-08-18 17:20:42
depth1
children0
last_payout2018-08-25 17:20:42
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length492
author_reputation1,146,616,139,479,238
root_title"[Math Talk #4] Pigeonhole Principle and Applications [2]"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id68,621,187
net_rshares0
@steemitboard ·
Congratulations @mathsolver! You have completed the following achievement on Steemit and have been rewarded with new badge(s) :

[![](https://steemitimages.com/70x80/http://steemitboard.com/notifications/votes.png)](http://steemitboard.com/@mathsolver) Award for the number of upvotes

<sub>_Click on the badge to view your Board of Honor._</sub>
<sub>_If you no longer want to receive notifications, reply to this comment with the word_ `STOP`</sub>


To support your work, I also upvoted your post!


> You can upvote this notification to help all Steemit users. Learn why [here](https://steemit.com/steemitboard/@steemitboard/http-i-cubeupload-com-7ciqeo-png)!
properties (22)
authorsteemitboard
permlinksteemitboard-notify-mathsolver-20180818t030150000z
categorymath
json_metadata{"image":["https://steemitboard.com/img/notify.png"]}
created2018-08-18 03:01:51
last_update2018-08-18 03:01:51
depth1
children0
last_payout2018-08-25 03:01:51
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length663
author_reputation38,975,615,169,260
root_title"[Math Talk #4] Pigeonhole Principle and Applications [2]"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id68,559,798
net_rshares0
@steemstem ·
post_voted_by
<center> https://cdn.discordapp.com/attachments/354723995037466624/463380522928963599/steemSTEM.png</center> <br><br> This post has been voted on by the steemstem curation team and voting trail.  <br> <br>There is more to SteemSTEM than just writing posts, check <a href="https://steemit.com/steemstem/@steemstem/being-a-member-of-the-steemstem-community">here</a> for some more tips on being a community member. You can also join our discord <a href="https://discord.gg/BPARaqn">here</a> to get to know the rest of the community!
properties (22)
authorsteemstem
permlinkre-math-talk-4-pigeonhole-principles-and-applications-2-20180818t110828
categorymath
json_metadata""
created2018-08-18 11:08:30
last_update2018-08-18 11:08:30
depth1
children1
last_payout2018-08-25 11:08:30
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length530
author_reputation262,017,435,115,313
root_title"[Math Talk #4] Pigeonhole Principle and Applications [2]"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id68,591,044
net_rshares0
@mathsolver ·
Thanks a lot! I'll do my best to post quality materials in Steemit.
properties (22)
authormathsolver
permlinkre-steemstem-re-math-talk-4-pigeonhole-principles-and-applications-2-20180818t110828-20180818t121014583z
categorymath
json_metadata{"tags":["math"],"app":"steemit/0.1"}
created2018-08-18 12:10:12
last_update2018-08-18 12:10:12
depth2
children0
last_payout2018-08-25 12:10:12
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length67
author_reputation1,337,981,311,807
root_title"[Math Talk #4] Pigeonhole Principle and Applications [2]"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id68,595,161
net_rshares0