create account

RE: Mathematical induction: Proving Gauss sum formula right by statistician

View this thread on: hive.blogpeakd.comecency.com

Viewing a response to: @aximot/mathematical-induction-proving-gauss-sum-formula-right

· @statistician · (edited)
You can even simply the thought behind this further by simply taking number 1 to n and listing each number in succession and then below each number list n to 1 (backwards).  Then summing down the row.   You'll notice that each number summed down is simply  n+1.  But because we've counted each column of numbers twice, we need to divide by 2 to "normalize" the results and get the correct answer.  So for example take n = 4.  Then write out:

1 2 3 4
4 3 2 1

And now add from the 4 columns:

1 2 3 4
4 3 2 1
----------
5 5 5 5 

Summing this is 5+5+5+5 or [5 x 4 or 5 x (n-1)] = 20.  Since we've double counted each column, we need to normalize by dividing by 2, which results in 20/2 = 10.

Notice that 1 + 2 + 3 + 4 = 10.
👍  
properties (23)
authorstatistician
permlinkre-aximot-mathematical-induction-proving-gauss-sum-formula-right-20180706t172303292z
categorysteemstem
json_metadata{"tags":["steemstem"],"app":"steemit/0.1"}
created2018-07-06 17:23:03
last_update2018-07-06 17:24:00
depth1
children2
last_payout2018-07-13 17:23:03
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length724
author_reputation4,036,062,166
root_title"Mathematical induction: Proving Gauss sum formula right"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id63,685,567
net_rshares5,992,515,712
author_curate_reward""
vote details (1)
@aximot ·
Nice and simple explanation thanks for that :)
👍  
properties (23)
authoraximot
permlinkre-statistician-re-aximot-mathematical-induction-proving-gauss-sum-formula-right-20180709t134232489z
categorysteemstem
json_metadata{"tags":["steemstem"],"app":"steemit/0.1"}
created2018-07-09 13:42:33
last_update2018-07-09 13:42:33
depth2
children1
last_payout2018-07-16 13:42:33
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length46
author_reputation3,751,919,119,176
root_title"Mathematical induction: Proving Gauss sum formula right"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id64,032,397
net_rshares6,086,820,503
author_curate_reward""
vote details (1)
@statistician ·
Yes, this is just like the method you initially mentioned, but without the geometry explanation.  Nice post!  Similar induction arguments can be made to obtain simple formulas for the sum of numbers squared, cubed, etc.  There is a nice body of work around these methods.
👍  
properties (23)
authorstatistician
permlinkre-aximot-re-statistician-re-aximot-mathematical-induction-proving-gauss-sum-formula-right-20180713t203715129z
categorysteemstem
json_metadata{"tags":["steemstem"],"app":"steemit/0.1"}
created2018-07-13 20:37:15
last_update2018-07-13 20:37:15
depth3
children0
last_payout2018-07-20 20:37:15
cashout_time1969-12-31 23:59:59
total_payout_value0.000 HBD
curator_payout_value0.000 HBD
pending_payout_value0.000 HBD
promoted0.000 HBD
body_length271
author_reputation4,036,062,166
root_title"Mathematical induction: Proving Gauss sum formula right"
beneficiaries[]
max_accepted_payout1,000,000.000 HBD
percent_hbd10,000
post_id64,578,118
net_rshares4,205,410,780
author_curate_reward""
vote details (1)